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Abstrakt:

V této práci se zabýváme geometrickými pr̊unikovými reprezentacemi graf̊u. Pro
danou tř́ıdu se známý problém rozpoznáváńı ptá, jestli graf na vstupu nálež́ı do této
tř́ıdy. Studujeme zobecněńı tohoto problému nazvané rozšiřováńı částečných reprezen-
taćı. Vstup je tvořen grafem spolu s částečnou reprezentaćı, jinými slovy část grafu je
předkreslena. Problém se ptá, jestli je možné tuto částečnou reprezentaci rozš́ı̌rit na
reprezentaci celého grafu.

Tento problém studujeme pro tř́ıdy intervalových graf̊u, vlastńıch intervalových
graf̊u, jednotkových intervalových graf̊u a chordálńıch grafǔ (ve formě reprezentaćı
jako podstromy ve stromě). Popisujeme lineárńı algoritmy pro prvńı dvě tř́ıdy a
téměř kvadratický algoritmus pro jednotkové intervalové grafy. Pro chordálńı grafy
uvažujeme r̊uzné verze problému a ukazujeme, že skoro všechny jsou NP-úplné.

Přestože tř́ıdy vlastńıch a jednotkových intervalových graf̊u jsou si rovny, problém
rozšǐrováńı částečných reprezentaćı je rozlǐsuje. Jednotkové intervalové grafy kladou
dodatečné podmı́nky týkaj́ıćı se přesných pozic interval̊u. V práci popisujeme novou
strukturu jednotkových intervalových reprezentaćı, která umožňuje tyto dodatečné
podmı́nky řešit.
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Abstra
t:

In this thesis, we study geometric intersection representations of graphs. For a
fixed class, the well-known recognition problem asks whether a given graph belongs
to this class. We study a generalization of this problem called partial representation
extension. Its input consists of a graph with a partial representation, so a part of
the graph is pre-drawn. The problems asks whether this partial representation can be
extended to a representation of the entire graph.

We study this problem for classes of interval graphs, proper interval graphs, unit
interval graphs and chordal graphs (in the setting of subtrees-in-tree representations).
We give linear-time algorithms for the first two classes and an almost quadratic-time
algorithm for unit interval graphs. For chordal graphs, we consider different versions
of the problem and show that almost all cases are NP-complete.

Even though the classes of proper and unit interval graphs are known to be equal,
the partial representation extension problem distinguishes them. For unit interval
graphs, it poses additional restrictions concerning precise positions of intervals, and
we describe a new structure of unit interval representations to deal with this.
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1 Introduction

Geometric representations of graphs have been studied as a part of graph theory from
its very beginning. Euler initiated the study of graphs by studying planar graphs in
the setting of three-dimensional polytopes. (But this relation of planar graphs and
polytopes was discovered much later by Cauchy. This is also the reason why vertices,
edges and faces of graphs have geometrical names.) A theorem of Kuratowski [32] pro-
vides the first combinatorial characterization of planar graphs and can be considered
as the start of modern graph theory. Nowadays, graphs and their drawing are deeply
connected everywhere in graph theory.

One of the fundamental themes of mathematics is that one wants to understand
the structure of big objects, and there are many methods designed to work with these
big objects. If the object is highly symmetrical, one can try to factorize symmetrical
parts to create a smaller ‘equivalent’ object which is easier to work with. Linear
algebra methods can be applied to embed the object into a low dimension and to find
fundamental directions in a linearized structure of the object. The technique we study
here is finding a good visualization of the object which displays its structure well.
For example, a good representation of a graph can visualize very well the information
contained in this graph. Figure 1.1 shows examples of graph visualizations.

∼=

Figure 1.1: Three examples of graph visualizations. The structure of the graph on
the left is not very understandable since the graph contains too many edges for this
type of drawing. But even the drawing of the graph in the middle containing only a
few edges is not very good. Furthermore, it is not obvious that the graph in the middle
is isomorphic to the graph on the right, for which the structure of edges is completely
clear.

9



Chapter 1. Introdu
tion

Interse
tion Representations. There are graphs for which drawings as in Figure 1.1 are
not convenient.1 For example, a graph may contain many edges, which makes these
drawings not very understandable even if the structure of the edges is very simple.
Therefore it seems reasonable to study different types of drawings tailored to specific
types of graphs.

In this thesis, we study intersection representations, which assign geometric ob-
jects to vertices of graphs and which encode edges by intersections of these objects.
Formally, an intersection representation R of G is a collection of sets {Rv : v ∈ V (G)}
such that Ru ∩ Rv 6= ∅ if and only if uv ∈ E(G). Since every graph can be repre-
sented in this way [34], to obtain interesting classes of graphs we restrict the sets Rv,
for instance to some specific geometric objects. For example, interval graphs have
intersection representations in which every set Rv is a closed interval of the real line.

Classical examples of intersection-defined classes include interval graphs, circle
graphs, permutation graphs, string graphs, convex graphs, and function graphs. As
can be seen from the three books [17, 36, 44], geometric intersection graphs have been
intensively studied for many reasons. First of all, graphs of these types naturally
appear in applications, and sometimes an application directly gives an intersection
representation. Also, many hard combinatorial problems can be solved very efficiently
on these intersection-defined classes of graphs. Moreover, there are many interesting
theoretical results connecting these classes to each other and to the rest of the graph
theory.

1.1 The Partial Representation Extension Problem

When one considers a specific class of intersection-defined graphs, it is very natural
to study a problem called recognition. The recognition problem of a class C, denoted
by Recog(C), asks whether an input graph has a representation R belonging to this
class C. The study of recognition has many applications since some problems are easily
solvable if we know a representation of the input graph.

For most of the intersection-defined classes, the complexity of their recognition is
well-known and deeply understood. For example, interval graphs can be recognized in
linear time [6, 9], while recognition of string graphs is NP-complete [30, 42]. (We note
that belonging to NP is non-trivial since there are examples of string graphs requiring
an exponential number of crossing points in every representation [31].) Our goal is to
study the easily recognizable classes and explore if the recognition problem becomes
harder when extra conditions are given with the input.

Partial Representation Extension. We study the following question of partial repre-
sentation extension for intersection-defined classes of graphs. A partial representation
R′ of G is a representation of an induced subgraph G′. The vertices of G′ are called
pre-drawn. A representation R of the entire graph G extends the partial represen-
tation R′ if R′v = Rv for every v ∈ V (G′). The partial representation extension for
intersection-defined classes, first considered in [29], is the following decision problem:

1In these drawing, vertices are represented by points in the plane, and edges are represented by
continuous curves connecting pairs of points.
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1.2. Classes under Consideration

Recog:

G
?

−→ R
a

b

c

d

G R

a
b

c
d

RepExt:

G+R′
?

−→ R
a

b

c

d

G R′

a

b c

Figure 1.2: The graph G is an interval graph, but the partial representation R′ is
not extendible.

Problem: RepExt(C) (Partial Representation Extension of C)
Input: A graph G and a partial representation R′.

Question: Does G have a representation R extending R′?

Figure 1.2 compares the recognition problem with the partial representation ex-
tension problem. In this thesis we investigate the complexity of partial representation
extension for interval graphs, proper interval graphs, unit interval graphs, and chordal
graphs.

Concerning other results for RepExt, the paper [25] studies partial represen-
tation extension of permutation and function graphs. It shows that both classes are
extendible in polynomial time, and that the problem becomes NP-complete if the
partial representation specifies functions only partially. Bläsius and Rutter [5] give
another linear-time algorithm for interval graphs extension, even through the paper
itself deals with a more general problem and the algorithm is quite involved.

1.2 Classes under Consideration

This thesis has three major chapters, which are mostly independent. In each chapter
we deal with the complexity of the partial representation extension problem for differ-
ent classes using different techniques. We now describe in detail the classes we shall
study.

Interval Graphs. In Chapter 2, we deal with interval graphs, which are one of the oldest
and most studied classes of graphs, introduced by Hajos [19]. A graph is an interval
graph if it has a representation R consisting of closed intervals on the real line, i.e.,
each vertex v is represented by a closed interval Rv in such a way that Ru ∩Rv 6= ∅ if
and only if uv ∈ E(G). We denote the class of interval graphs by INT.

Interval graphs have many useful theoretical properties, for example they are
perfect and related to path-width decomposition. Most hard combinatorial problems
are polynomially solvable for interval graphs: maximum clique, k-coloring, maximum
independent set, etc. Also, interval graphs naturally appear in many applications
concerning biology, psychology, time scheduling, and archaeology; see for example [40,
45, 3].
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tion

a b c a

b

c

Figure 1.3: A partial representation of a path P2 representing end-points far apart
is extendible only proper intervals, but not by unit intervals.

Proper and Unit Interval Graphs. Chapter 3 deals with two famous subclasses of in-
terval graphs. An interval representation is called proper if no interval is a proper
subset of another interval (meaning Ru ⊆ Rv implies Ru = Rv). An interval represen-
tation is called unit if the length of each interval is one. The class of proper interval
graphs (PROPER INT) consists of all interval graphs having proper interval represen-
tations, whereas the class of unit interval graphs (UNIT INT) consists of all interval
graphs having unit interval representations.

Several linear-time recognition algorithms are known for these classes [33, 20, 8,
7]. Also, solving many problems is even easier in the case of these classes. A famous
result of Roberts [39] states that these two classes are equal:

PROPER INT = UNIT INT. (1.1)

It is easy to see that UNIT INT ⊆ PROPER INT. To obtain the other inclusion, we
modify a proper interval representation by scaling and shifting.

Most papers concentrate only on proper interval graphs which have an easier
combinatorial structure. To the best of our knowledge, there are only a few papers
working specifically with unit interval representations, and they either show different
proofs of (1.1), or give algorithms constructing unit interval representations directly.
For example a very nice paper of Corneil et al. [8] describes a linear-time algorithm
constructing a unit interval representation in a grid of size 1

n
(so each endpoint has

the form k
n
), where n is the number of vertices.

At first, this ignoring of specific properties of unit interval representations does
not seem like a big problem. For example, when one works with a problem like vertex
coloring or hamiltonicity, exactly the same situation is obtained for unit interval graphs
as for proper interval graphs. But when one studies representations restricted in some
way, this equivalence does not hold anymore. Indeed, the equivalence is just stating
that whenever a graph has a proper interval representation, it also has some other unit
interval representation.

In the case of partial representation extension, we need to distinguish these
classes; see Figure 1.3. Partial unit interval representations put additional restrictions
which we need to deal with, and therefore we develop some additional structure. There
is a good lesson one can take out of this: Whenever there are two equivalent objects,
one needs to know precisely under which conditions this equivalence holds.

Chordal Graphs. In Chapter 4, we deal with chordal graphs (also called triangulated
graphs). One definition of this class states that a graph is chordal if it does not
contain an induced cycle of length four or more, i.e., each “long” cycle is triangulated.
An equivalent definition, which we use in this thesis, states that chordal graphs are
intersection graphs of subtrees of a tree. More precisely, for every chordal graph G

12



1.2. Classes under Consideration

c
a

b

d e

f g

Ra

Rb Rc

Rd

Re

Rf

Rg

T

Figure 1.4: An example of a chordal graph with one of its representations.

there exists a tree T and a collection R = {Rv : v ∈ V (G)} of subtrees of T such that
Ru ∩ Rv 6= ∅ if and only if uv ∈ E(G). For an example of a chordal graph and one of
its intersection representations, see Figure 1.4.

The class of chordal graphs is well-studied and has many wonderful properties.
Chordal graphs are closed under induced subgraphs and contain so called perfect elim-
ination schemes, closely related to optimal reorderings of sparse matrices for Gaussian
elimination. Also, chordal graphs are perfect and many hard combinatorial problems
are easy to solve on chordal graphs: maximum clique, maximum independent set,
k-coloring, etc. Chordal graphs can be recognized in time O(n+m) [41].

When chordal graphs are viewed as subtrees-in-tree graphs (T-in-T), it is natural to
consider two other possibilities: subpaths-in-path graphs (P-in-P) and subpaths-in-tree
graphs (P-in-T) which are also called path graphs. For example the graph in Figure 1.4
is a path graph but not a subpath-in-path graph. In addition, we consider a proper
version of subpath-in-path graphs (PROPER P-in-P) which are P-in-P graphs having a
representation such that Ru ⊆ Rv implies Ru = Rv.

2

It is easy to see that

PROPER P-in-P = PROPER INT and P-in-P = INT.

These subpaths-in-path representations can be viewed as a discretization of represen-
tations on the real line and for a refined enough discretization we are able to represent
every interval graph as a subpath-in-path graph. Therefore, the classes PROPER P-in-P
and P-in-P are recognizable in linear time. The current fastest algorithm for path graph
recognition runs in time O(nm) [15, 43].

So why do we study these classes again separately in Chapter 4? The reason
is that the partial representation extension problem puts additional constraints on
representations which makes the subpath-in-path classes behave slightly differently
compared to their real line counterparts. Actually, the RepExt(PROPER P-in-P) and
RepExt(P-in-P) problems are much closer to RepExt(UNIT INT) and very similar
techniques can be applied; all these problems involve construction of representations
in limited spaces.

It is not immediately clear how to define partial representations of subtrees in a
tree, and we analyse four different definitions and show how the complexity changes.

2One might also define proper versions of P-in-T and T-in-T classes but these classes are not
normally considered. If an arbitrary tree T can be chosen, every representation R can be modified to
a proper representation by attaching leaves to the tree and enlarging all subtrees of R. Of course, if T
is restricted (for example by a partial representation), then this is not the case and some interesting
differences may appear. These classes seem to be possible directions for future research.

13
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Ru

Fixed

Ru

Sub

Ru

Add

Ru

Both

Figure 1.5: Four possible modifications of T ′ with a single pre-drawn vertex u. The
added branches in T are denoted by dots and new vertices of T are denoted by small
circles.

A partial representation R′ specifies some tree T ′ and gives one subtree Ru ⊆ T ′ for
each u ∈ V (G′). The representation R extending R′ is placed in a tree T which is
created by some modification of T ′. We consider four possible modifications and get
different extension problems:

• Fixed – the tree is not modified at all, i.e., T = T ′.

• Sub – the tree can only be subdivided, i.e., T is a subdivision of T ′.3

• Add – we can add branches to the tree, i.e., T ′ is a subgraph of T .

• Both – we can both add branches and subdivide, i.e., a subgraph of T is a
subdivision of T ′, or in other words T ′ is a topological minor of T .

For an illustration of the four modifications, see Figure 1.5.

We denote these problems by RepExt(C,T) where T denotes the type. Con-
structing a representation in a specified tree T ′ is interesting even if no subtree is pre-
drawn, i.e., G′ is empty; this problem is denoted by Recog

∗(C,T). Clearly, hardness
of the Recog

∗ problem implies the hardness of the corresponding RepExt problem.

1.3 Motivation

There are several strong reasons for studying partial representation extension problems
which we illustrate in this thesis.

Other Extension Problems. The partial representation extension problems belong to
a general paradigm of problems where a partial solution is given and the task is to
extend it. Every partial solution extension problem is at least as hard as the original
problem without any partial solution, which corresponds to a well-known saying in
architecture that it is much easier to build a house from scratch. Sometimes, partial
solution extension problems show unusual changes in their complexity. We give a few
examples of these problems.

• Every k-regular bipartite graph is k-edge-colorable. But if some edges are pre-
colored, the extension problem becomes NP-complete even for k = 3 [11], and
even when the input is restricted to planar graphs [35].

3Let xy ∈ E(T ′) be a subdivided edge (with a vertex z added in the middle). Then also pre-drawn
subtrees containing both x and y are modified and contain z as well. So technically in the case of
subdivision, it is not true that R′

u = Ru for every pre-drawn interval but from the topological point
of view the partial representation is extended.

14



1.3. Motivation

• A similar situation holds for vertex coloring. In general, k-coloring is NP-
complete, but it is solvable efficiently for some simple classes like bipartite graphs
or interval graphs. When some vertices are pre-colored, extension of these color-
ings is NP-complete even if the input graph is restricted to a bipartite graph [21]
or an interval graph [4].

• Surprisingly, extension of partial representations of graphs has only recently
been considered. For planar graphs, partial representation extension is solvable
in linear time [2]. To complete the picture, every planar graph admits a straight-
line drawing, but partial representation extension of such representations is NP-
complete [37].

The paper [29] gives the first polynomial results concerning extension of partial
representations of intersection-defined classes. A common yet quite surprising property
of intersection representations is that for most of these classes the partial representation
extension problem remains polynomially solvable, unlike the case of partial coloring
extension problems.

Better Understanding of Stru
ture. When one wants to solve a partial solution exten-
sion problem in polynomial time, a good understanding of the structure of possible
solutions seems to be necessary. One can analyse a partial solution and find a solution
extending this partial solution using this structure.

Consider again vertex k-coloring of bipartite graphs. For trivial reasons, every
bipartite graph is k-colorable for k ≥ 2. We know this independently of the structure
of the graph. But without understanding the structure of possible vertex k-colorings,
one can hardly solve the partial coloring extension problem. The result that this
problem is NP-hard can be translated as that there is (very likely, unless P = NP) no
good structure of possible colorings one can use to solve the extension problem.

So a good property of partial solution extension problems is that if they are
solvable in polynomial time, they force one to get a very good insight into the structure
of all possible solutions. All algorithms for partial representation extension we know
work on the following principle. One works with all possible solutions stored in some
efficient way. Then some specific conditions are derived from the partial representation,
and tested efficiently for all possible solutions. If some solution satisfies the derived
conditions, it can be used as a representation extending the partial representation. If
no solution satisfies the conditions, the partial representation is not extendible.

In many cases the structure which can be used is already known and well un-
derstood. For interval graphs, one can use a tree structure called PQ-trees which
compactly represents all possible solutions. For proper interval graphs, we use the
known ‘uniqueness’ of the solution. The paper [25] uses for permutation and function
graphs a known relation of all solutions with the modular decomposition of the input
graph. For unit interval graphs, no sufficient structure was known and we describe
completely new structural properties in Sections 3.2.1, 3.3.2, 3.3.3, and 3.3.4. Lastly,
our hardness results concerning chordal graph extension can be interpreted as saying
that there is no strong structure one could use. In many cases the partial representa-
tion extension problems of chordal graphs (and their subclasses) can solve very hard
problems concerning integer partitioning.
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To recapitulate, we believe that the partial representation extension problem is
interesting because when one wants to attack this problem, a new structure of all rep-
resentations has to be discovered and used (if it is not already known). Motivations
like these appear all over mathematics. Hilbert once stated about Fermat’s Last The-
orem that a good mathematical problem is like a goose hatching golden eggs; when
people try to attack it, new structures and properties are discovered and understood.
Indeed, this specific case of unsolvability of diophantine equations is mostly interest-
ing because by solving it many new techniques and structures in algebraic number
theory were discovered. Of course, we are not claiming that the partial representation
extension problem is comparable to Fermat’s Last Theorem, just that the property ‘to
solve the problem, you need to get a better understanding of the structure’ is generally
desirable.

Appli
ations and New Te
hniques. Another nice property of partial representation ex-
tension problems is that algorithms or techniques developed for them can be applied
to other problems. For example, using our structural properties one can easily answer
the following algorithmic question: Given a unit interval graph, what is the length of
a smallest possible segment of the real line such that the representation can be con-
structed within this segment? Additionally, the opposite question of what is the size
of the widest possible unit interval representation of a given connected graph can be
answered. For example, for a path having 2n vertices, the length n + ε for any ε > 0
is sufficient, and the widest representation has length 2n. We are not aware of any
previous structural or algorithmic results of this type.

Also, a recent related problem of simultaneous graph representations was in-
troduced by Jampani and Lubiw [22, 23]. The input gives graphs G1, . . . , Gk with
common vertices I, meaning V (Gi) ∩ V (Gj) = I for every i 6= j. The problem asks
whether there exist representations R1, . . . ,Rk such that each Ri represents Gi and
the representations are equal on I, meaning Ri

v = Rj
v for every v ∈ I and i 6= j. We

denote this problem by SimRep(C). For an example, see Figure 1.6.

Simultaneous representations are closely related to partial representations and
we discuss this connection in the concluding chapter. Using this relation, the paper [5]
solves RepExt(INT) in timeO(n+m) by solving another simultaneous representations
problem. The simultaneous representations problem similarly distinguishes between
proper and unit interval graphs. We already have some partial results (not written
anywhere yet) which show than many of the techniques developed in Chapter 3 can

a
b

c d
G1

G2

G3

I

a b

c

d

R1

a b

c

d

R2

a b

c

d

R3

Figure 1.6: Simultaneous interval representations of three graphs G1, G2 and G3

with I = {a, b, c, d}.
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1.4. Results of This Thesis

be applied to the SimRep(PROPER INT) and SimRep(UNIT INT) problems, and that
both problems can be solved in polynomial time if the graphsG1, . . . , Gk are connected.

There is also another connection of the partial representation extension of interval
graphs to much harder problems concerning Allen algebras, and again we discuss this
connection in more details in the concluding chapter.

1.4 Results of This Thesis

We present a short list of the main results of this thesis, listed by chapter.

1.4.1 Results of Chapter 2

In this chapter, we deal with the partial representation extension problem for interval
graphs. Our main result is:

Theorem 1.1. The problem RepExt(INT) is solvable in time O(n+m) where n is the
number of vertices and m is the number of edges.

We note that to get this running time we make some minor and very natural
assumptions on the input, more details in Section 1.5. Our algorithm is based on a
PQ-tree approach for recognition of interval graphs [6]. We derive a partial ordering
from the partial representation and test whether this partial ordering is compatible
with the PQ-tree. We show that the representation can be extended if and only if the
partial ordering is compatible.

1.4.2 Results of Chapter 3

We deal with the classes of proper and unit interval graphs. For the first class, we
prove:

Theorem 1.2. The problem RepExt(PROPER INT) is solvable in time O(n+m) where
n is the number of vertices and m is the number of edges.

Again, some natural assumptions on the input are necessary; see Section 1.5.
Our approach is based on the ‘uniqueness’ of the left-to-right ordering of intervals in
every representation. We give a simple characterization of all extendible instances,
and the algorithm just needs to test this characterization in time O(n+m).

Next, we deal with the RepExt(UNIT INT) problem. Actually, we mostly deal
with a more general problem called bounded representation of unit interval graphs,
BoundRep for short:

Problem: BoundRep (Bounded Representation of UNIT INT)
Input: A graph G and some lower/upper bounds for the positions of

some intervals.
Question: Does G have a unit interval representation which respects the

bounds?
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Unfortunately, this problem is hard in general.

Theorem 1.3. The BoundRep problem is NP-complete.

In each representation of a graph with c components, these components are
ordered from left to right according to the position of their intervals; see Section 1.5
for details. Let us denote this ordering ◭, so C1 ◭ · · · ◭ Cc. Also let D(r) denote the
complexity of dividing numbers of length r in binary. Our computational model is the
Turing machine and the best known algorithm achieves D(r) = O(r log r2log

∗ r) [13].
We get the following main result of this chapter:

Theorem 1.4. The BoundRep problem with a prescribed ordering ◭ can be solved in
time O(n2 + nD(r)), where r is the size of the input.

The algorithm makes O(n2) combinatorial iterations, each of them taking time
O(1). The additional timeO(nD(r)) is used for arithmetic operations with the bounds.

This result gives the following corollaries:

Corollary 1.5. The BoundRep problem can be solved in time O((n2 + nD(r))c!),
where c is the number of components of G and r is the size of the input.

Corollary 1.6. The RepExt(UNIT INT) problem can be solved in time O(n2+nD(r)),
where r is the size of the input.

1.4.3 Results of Chapter 4

We consider the complexity of the Recog
∗ and RepExt problems for chordal graphs

and its three subclasses and all four types. Our results are displayed in Figure 1.7.

• All NP-complete results are reduced from the 3-Partition problem. The re-
ductions are very similar and the basic case is RepExt(PROPER P-in-P,Fixed).
Also, the reductions are very close to the reduction in Theorem 1.3.

• Polynomial cases for PROPER P-in-P and P-in-P are based on known algorithms
for recognition and extension, and use similar techniques as the ones described
in Chapters 2 and 3. Unlike for the real line the space in T is limited, and we
adapt the algorithm for the specific problems.

Also, we study the parametrized complexity of these problems with respect to
three parameters: The number of pre-drawn subtrees k, the number of components c
and the size t of the tree T ′. In some cases, the parametrization does not help and
the problem is NP-complete even if the value of the parameter is zero or one. In other
cases, the problems are fixed-parameter tractable (FPT), W[1]-hard or in XP.

The main result concerning parametrization is the following. The BinPacking

problem is a well-known problem concerning integer partitions; more details in Sec-
tion 4.1.3. For two problems A and B, we denote by A ≤ B a polynomial reduction
and by A ≤wtt B a weak truth-table reduction which means that more instances of
the problem B can be used to solve A. (More precisely, this number of B-oraculum
questions used to solve A is bounded by a computable function.)

Theorem 1.7. BinPacking ≤ RepExt(PROPER INT,Fixed) ≤wtt BinPacking

where the weak truth-table reduction needs to solve 2k instances of BinPacking.
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O(n+m) [41]

NP-complete

Figure 1.7: The complexity of the different problems for all four considered classes.
Results without references are new results of this thesis.

1.5 Notation and Preliminaries

As usual, we reserve n for the number of vertices and m for the number of edges of
the graph G. We denote the set of vertices by V (G) and the set of edges by E(G).
For a vertex v, we let N(v) = {x, vx ∈ E(G)} denote the open neighborhood of v, and
N [v] = N(v) ∪ {v} its closed neighborhood. We call maximal connected subgraphs of
a graph its components.

For each interval Ru, we denote by ℓu and ru the positions of its left and right
endpoints. For INT, PROPER INT and UNIT INT classes, these are positions on the real
line. For PROPER P-in-P and P-in-P classes, these are vertices of the path T . For
numbered vertices v1, . . . , vn, we abbreviate endpoints of vi just as ℓi and ri.

Topology of Components. The following property works quite generally for many intersection-
defined classes of graphs, and works for all classes studied in this thesis. The only
condition required for this property is that the sets Rv are connected subsets of some
topological space, for example Rk. (As a negative example, this property does not
hold for 2-interval graphs. A graph is a 2-interval graph if each Rv is union of two
closed intervals.) Let C be a component of G. Then the property is that for each
representation R,

⋃

v∈C Rv is a connected subset of the space, and we call this subset
area of C. Clearly, the areas of components are pairwise disjoint.

For classes of interval graphs (both on the real line, and as subpaths-in-path
graphs), the areas of the components have to be ordered from left to right. Let us
denote this ordering ◭, so we have C1 ◭ · · · ◭ Cc. For different representations R,
we can have different orderings ◭. When there is no restriction on R, it is possible to
create a representation in every one of c! possible orderings.

(Un)lo
ated Components. A partial representationR′ divides the components into two
types. A component C is called located if it contains at least one pre-drawn vertex, and
it is called unlocated otherwise. For located components, we have partial information
about their position. The positions of unlocated components in a representation are
much more free.
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For classes of interval graph, the located components are ordered from left to
right. A trivial necessary condition for an extendible partial representation is that
the pre-drawn intervals of each component appear consecutively. Indeed, if u, v ∈ C,
w ∈ C ′ and Rw is between Ru and Rv where C and C ′ are two distinct components,
then the partial representation is clearly not extendible. For every representation R
extending the partial representation, the ordering ◭ has to agree with this left-to-right
order of the located components.

For problems as RepExt(PROPER INT) or RepExt(UNIT INT), unlocated com-
ponents are not very interesting; they can be placed on the real line far to the right,
without interfering with the partial representation at all. For problems in Chapter 4,
the space in T is limited and the unlocated components have to be placed somewhere.
In many cases, the existence of unlocated components is necessary for some problems
to be NP-complete.

Remarks Con
erning Input. To obtain the linear-time algorithms described in this
thesis, we need some reasonable assumption on the partial representation which is
given by the input. Similarly, most of the graph algorithms cannot achieve better
running time than O(n2) if the input graph is given by an adjacency matrix instead
of a list of neighbors for each vertex.

First, we consider classes INT and PROPER INT. We say that the partial repre-
sentation is sorted if it gives the pre-drawn intervals sorted from left to right. We say
that the partial representation is normalized if all its endpoints are integers between 0
and 2k (where k is the number of pre-drawn intervals). Notice that from a normalized
representation, we can produce a sorted representation in time O(k), and vice versa.

To get linear time in Theorems 1.1 and 1.2, we assume that the input partial
representation is given sorted or normalized. If this assumption is not satisfied, the
algorithms would need additional time O(k log k) to sort the partial representation.
This assumption makes sense since the solutions of RepExt for these classes depends
only on the topology of the partial representation, not on the precise positions of
endpoints.

Concerning classes PROPER P-in-P and P-in-P, we assume an input of the follow-
ing type. For the path T in which the representation should be constructed, the input
only specifies its length which is polynomial with respect to n and m. Then for every
pre-drawn subpath Rv, only two numbers ℓv and rv are given. Moreover, we assume
that these pre-drawn endpoints are sorted from left to right, otherwise additional time
O(k log k) is required.
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2 Extending Interval Graphs

In this chapter, we solve the problem RepExt(INT) in time O(n + m). In the first
section, we describe how PQ-trees work and how to apply interval orders on them
fast. The problem solved in the first section is an example of a more general type of
problems: Having a set of elements with some tree structure and a partial ordering,
we want to order the elements according to this partial ordering while maintaining the
tree structure.

In the second section, we show how to solve the partial representation extension
problem using PQ-trees and interval orders. Let G be an input graph ofRepExt(INT).
It is important to stress out that this interval order is based on a completely different
interval graph H where the vertices of H correspond to the maximal cliques of G.
This distinction between G and H becomes more clear since G is represented by
closed intervals and H is represented by open intervals.

2.1 PQ-trees and Interval Orders

To describe PQ-trees, we start with a motivational problem. An input of the consec-
utive ordering problem is a set E of elements and restricting sets S1, S2, . . . , Sk. The
task is to find a (linear) ordering of E such that every Si appears consecutively (as
one block) in this ordering.

Example 2.1. Consider elements E = {a, b, c, d, e, f, g, h} and restricting sets S1 =
{a, b, c}, S2 = {d, e}, and S3 = {e, f, g}. For example, orderings abcdefgh and
fgedhacb are feasible. On the other hand, orderings acdefgbh (violates S1) and
defhgabc (violates S3) are not feasible.

PQ-trees. A PQ-tree is a tree structure that allows to solve consecutive ordering effi-
ciently. Moreover, it stores all feasible orderings for a given input.

The leaves of the tree correspond one-to-one to the elements of E. The inner
nodes are of two types: The P-nodes and the Q-nodes. For every node, the order of
its children is fixed. A PQ-tree T represents one ordering <T , given by the ordering
of the leaves from left to right, see Figure 2.1.

To obtain other feasible orderings, we can reorder children of inner nodes. Chil-
dren of a P-node can be reordered in an arbitrary way. On the other hand, we can only
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Figure 2.1: PQ-trees representing orderings abcdefgh and fgedhacb.

reverse an order of children of a Q-node. Two trees are equivalent if we can change one
tree to the other only using these operations. For example, the trees in Figure 2.1 are
equivalent. Every equivalence class of PQ-trees corresponds to all the orderings feasi-
ble for some input sets. The equivalence class of the PQ-trees in Figure 2.1 corresponds
to the input sets in Example 2.1.

For the purpose of this thesis, we only need to know that a PQ-tree can be
constructed in time O(e + k + t) where e is the number of elements of E, k is the
number of restricting sets and t is the total size of restricting sets. Booth and Lueker [6]
describe details of their construction.

2.1.1 Applying a Partial Ordering

Suppose that T is a PQ-tree and we have a partial ordering ⊳ of its elements (leaves).
We say that a reordering T ′ of the PQ-tree T is compatible with ⊳ if the ordering <T ′

extends ⊳, meaning a ⊳ b implies a <T ′ b.

Problem: Reorder(T,⊳)
Input: A PQ-tree T and a partial ordering ⊳.

Question: Is it possible to reorder T to T ′, compatibly with ⊳?

The algorithm we are going to describe works even for a general relation ⊳. For
example, ⊳ does not have to be transitive (as in example in Figure 2.2) or even acyclic
(but in such a case, of course, no solution exists).

Proposition 2.2. The problem Reorder(T,⊳) is solvable in in time O(e+m), where
e is the number of elements and m is the number of comparable pairs in ⊳.

A PQ-tree defines some hierarchical structure on its elements. We start with a
simple lemma which states that we can try to solve the problem locally (inside of some
subtree) and this local solution will always be correct; either there exists no solution
of the problem at all, or our local solution can be extended for the whole tree.

Lemma 2.3. Let S be a subtree of a PQ-tree T . If T can be reordered compatibly with
⊳ then every local reordering of the subtree S compatible with ⊳ can be extended to a
reordering of the whole tree T compatible with ⊳.
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2.1. PQ-trees and Interval Orders

Proof. Let T ′ be a reordering of the whole PQ-tree T compatible with ⊳. Notice
that all elements of S appear consecutively in <T ′. Therefore, we can replace this
local ordering of S by any other order satisfying all conditions given by ⊳. We obtain
another reordering of the whole tree T which is compatible with ⊳ and extends the
local ordering of S as requested.

This gives the following greedy algorithm. We represent the ordering ⊳ by a
digraph having m edges. We reorder the nodes from bottom to the root and modify
the digraph by contractions. When we finish reordering of a subtree, the order is fixed
and never changed in the future; by Lemma 2.3, either this local reordering will be
extendible, or there is no correct reordering of the whole tree at all. When we finish
reordering of a subtree, we contract all its vertices. We process a node of the PQ-tree
when all its subtrees are already processed and represented by single vertices in the
digraph.

For a P-node, we check whether the subdigraph induced by the vertices corre-
sponding to the children of the P-node is acyclic. If it is acyclic, we reorder the children
according to a topological sorting. Otherwise, there exists a cycle, no feasible ordering
exists and the algorithm returns “no”. For a Q-node, there are two possible orderings.
All we need is love, and to check whether one of them is feasible. For a pseudocode,
see Algorithm 1 in Appendix A.1. For an example, see Figure 2.2.

Proof of Proposition 2.2. We use the described algorithm. We need to argue its cor-
rectness. The algorithm processes the tree from bottom to the top. For every subtree
S, it finds some reordering of S according to ⊳. If no such reordering of S can be

P

P Q

a b c d e f

a
b

c

d

e

f

P

P Q

ab c d e f

bac
d

e

f

P

P Q

ab c d e f

bac def

Figure 2.2: We show an example how the reordering algorithm works, the order of
the operations is from left to right. First, we reorder the highlighted P-node of the
PQ-tree on the left. The subdigraph induced by a, b and c has a topological sorting
b → a → c. We contract these vertices into the vertex bac. Next, we keep the order
of highlighted Q-node and contract its children into the vertex def . When we reorder
the root P-node, we obtain a cycle between bac and def , and the algorithm outputs
“no”. Notice that the original digraph ⊳ is acyclic, just it is not compatible with the
structure of the PQ-tree.
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found, it is not possible to order the whole tree according to ⊳. And if it is possible,
every reordering of S is correct according to Lemma 2.3.

The algorithm can be implemented in linear time depending on the size of the
PQ-tree and the partial ordering ⊳ which is O(e+m). Each edge of the digraph ⊳ is
processed exactly once and then it is contracted.

2.1.2 Applying an Interval Order

Let {Iv : v ∈ V (H)} be a representation of an interval graph H using open intervals.1

Once again, we note that this graph H is a completely different graph from the input
graph G of RepExt(INT) which we are going to solve later; the vertices of H corre-
spond to the elements (leaves) of the PQ-tree which later correspond to the maximal
cliques of G.

An interval representation ofH defines the following partial order on V (H) which
is called an interval order. If two intervals Iu and Iv do not intersect, there is a natural
ordering between them: One is on the left and the other one is on the right. Let us
denote this interval order by ⊳. For u, v ∈ V (H), we define u ⊳ v if and only if
ru ≤ ℓv. For example, in Figure 1.3 we obtain an interval order in which a ⊳ c but b
is incomparable to both a and c.

There are many interesting relations between interval graphs and interval orders.
The study of interval orders has the following motivation. Suppose that intervals of H
correspond to events and each interval describes when the corresponding event could
happen in the timeline. Then if a ⊳ b, we know for sure that the event a happened
before the event b. If two intervals intersect, we do not have any information about the
order of their events. Nevertheless, for purpose of this paper, we only need to know
the definition of interval orders. For more information, see survey [46].

Reordering PQ-trees. Let ⊳ be an interval order of e elements, for which we know a
normalized interval representation having all endpoints as integers between 0 and 2e.
The normalized representation allows us to take any subset of endpoints, to sort it in
linear time corresponding to the size of the subset and then process the subset in this
sorted order. For such ⊳, we show that we can solve Reorder(T,⊳) faster:

Proposition 2.4. If ⊳ is an interval order with a normalized representation, we can
solve the problem Reorder(T,⊳) in time O(e) where e is the number of elements
of T .

The general outline of the algorithm is exactly the same as before. We process
the nodes of the PQ-tree from bottom to the root and reorder them according to
local conditions. Using normalized interval representation of an interval order, we can
implement all steps faster then before.

We are not going to construct the digraph explicitly, and therefore we are not
doing any contractions. Instead, we are going to work with sets of intervals and
compare them with respect to ⊳ fast. When we process a node, its children correspond

1For purposes of the following section, we allow empty intervals with ℓv = rv.
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LH(I1) UH(I1) LH(I2) UH(I2)

a

a′
b

b′

Figure 2.3: Normal intervals belong to I1, dashed intervals belong to I2. If a ⊳ b,
then also a′ ⊳ b′.

to sets I1, . . . , Ik ⊆ V (H) we already processed before. The reordering is going to use
specific properties of an interval order. When reordering of the node is done, we just
put all the sets together:

I = I1 ∪ I2 ∪ · · · ∪ Ik.

Comparing Subtrees. Let I1 and I2 be sets of intervals. We naturally say I1 ⊳ I2 if
there exist a ∈ I1 and b ∈ I2 such that a ⊳ b. Using the interval representation, we
can test whether I1 ⊳ I2 in a constant time. The following lemma states that we just
need to compare the “left-most” interval of I1 with the “right-most” interval of I2.

Lemma 2.5. Suppose that a ⊳ b, a ∈ I1 and b ∈ I2. Then for every a′ ∈ I1, ra′ ≤ ra
and every b′ ∈ I2, ℓb ≤ ℓb′ also a′ ⊳ b′.

Proof. From definition, x ⊳ y if and only if rx ≤ ℓy. We have ra′ ≤ ra ≤ ℓb ≤ ℓb′ and
thus a′ ⊳ b′. See Figure 2.3, handles are explained later.

Using the previous lemma, we just need to compare a′ having the left-most ra′
to b′ having the right-most ℓb′ since I1 ⊳ I2 if and only if a′ ⊳ b′. To simplify the
description, we define handles of I, a lower handle and upper handle:

LH(I) = min{rx | x ∈ I} and UH(I) = max{ℓx | x ∈ I}.

Notice that LH(I) < UH(I) if and only if I is not a clique. Using handles, we can
compare sets of intervals fast: I1 ⊳ I2 if and only if LH(I1) ≤ UH(I2). For an
example, see Figure 2.3. For each processed subtree, we are going to remember just
these handles, we do not need to remember which specific intervals were contained in
the subtree. This is a replacement of the contraction operation used before.

Reordering Nodes. Now, we describe how to reorder children of a processed node fast.
Let I1, . . . , Ik be sets of intervals of the subtrees of this node for which we know
handles. We call a linear ordering < of sets I1, . . . , Ik topological sorting if Ii ⊳ Ij

implies Ii < Ij for every i 6= j. If the processed node is a P-node, we need to find any
topological sorting. If it is a Q-node, we need to test whether the current ordering or
its reversal is a topological sorting.

Since the interval representation is normalized and all the handles are at positions
of the endpoints, we can sort all handles (both lower and upper) of I1, . . . , Ik from
left to right in time O(k). The handles can share coordinates and we deal with ties as
follows: First, we place the lower handles of a given coordinate (in any order) and then
we place the upper handles of the same coordinate (again, in any order). Now, Ii ⊳ Ij

if LH(Ii) is on the left of UH(Ij) in the ordering. For an example, see Figure 2.4.
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I1

I2

I3

UH(I1) LH(I2) UH(I3) LH(I1) =UH(I2) LH(I3)

Figure 2.4: For sets I1, I2 and I3, we get a common order of handles UH(I1) ≤
LH(I2) ≤ UH(I3) ≤ LH(I1) ≤ UH(I2) ≤ LH(I3). Notice that ⊳ is not transitive:
I1 ⊳ I2 and I2 ⊳ I3 but I1 6⊳ I3. The only topological sorting is I1 < I2 < I3.

An element Ij is minimal if there is no Ii ⊳ Ij . The following lemma allows to
find a minimal element fast:

Lemma 2.6. Let Ij be an element. It is a minimal element if and only if there is no
lower handle other than LH(Ij) on the left of UH(Ij).

Proof. Notice that Ii ⊳ Ij if and only if LH(Ii) ≤ UH(Ij). There is no such Ii if and
only if there is no LH(Ii) on the left of UH(Ij).

We can use this lemma to identify all minimal elements. If the ordering starts
with two lower handles, there exists no minimal element. If the first element of the
ordering is LH(Ii) than Ii is a unique candidate for a minimal element. We just need
to check whether there is some other LH(Ij) before UH(Ii), and if so, no minimal
element exists.2 If the common ordering starts with a group of upper handles, we have
several candidates for a minimal element: All Ii’s of these upper handles are minimal
elements and maybe Ij of the following lower handle LH(Ij); Ij is a minimal element
if there is no other lower handle on the left of UH(Ij).

Now, suppose that Ij is a minimal element and there is a topological sorting
starting with Ii. Then we can modify this sorting by moving Ij to the front, and
we obtain another topological sorting starting with Ij. So we can construct some
topological sorting as follows. We always detect one minimal element, remove its
handles, append the minimal element to the constructed topological sorting and repeat
the procedure for the remaining elements. And if in some step no minimal element
exists, we know that no topological sorting exists.

For a P-node, we just need to find any topological sorting by repeated removing
of minimal elements. For a Q-node, we just test whether the current ordering or its
reversal is a topological order; by going through the given ordering, checking whether
each element is a minimal elements and then removing its handles from the ordering.
In both cases, if we find a correct topological sorting, we use it reorder the children
of the node. Otherwise, the reordering is not possible and the algorithm fails in this
node. We are able to do the reordering of the node in time O(k).

Joining Subtrees. After processing a node, we join several subtrees into one subtree
by recalculating handles. Let I1, . . . , Ik are sets of intervals corresponding to subtrees

2This can be done a in constant time if we remember in each moment position of two left-most
lower handles in the ordering and update it after removing one of them from the ordering.
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of the node. Then for the joined subtree I = I1 ∪ I2 ∪ · · · ∪ Ik we calculate handles
as follows:

LH(I) = min
{

LH(Ii)
}

and UH(I) = max
{

UH(Ii)}.

Notice that this exactly corresponds to the definition of handles but we can compute
them in time O(k) instead of O(|I|).

Putting Together.We just put all the parts together exactly as before; for a pseudocode
of the whole algorithm see Section A.2. The algorithm allow us to find a reordering of
the PQ-tree T according to an interval order ⊳ in time O(e):

Proof of Proposition 2.4. The algorithm is correct since it is processing the tree in
exactly the same manner as the algorithm for general orders. First, the relation ⊳

on sets I1 and I2 of intervals corresponds to existence of an edge after contracting
the vertices of I1 and I2 in the digraph. Then, the topological sorting is correctly
constructed using minimal elements if it exists, by Lemma 2.6.

Concerning the time complexity, we already discussed that we are able to com-
pare sets using handles in a constant time, by Lemma 2.5. We spend time O(k) in
each node with k children. Thus the total time complexity of the algorithm is linear
in the size of the tree, which is O(e).

2.2 Extending Interval Graphs

In this section, we describe an algorithm solving RepExt(INT) in time O(n + m).
Interval representations have closed intervals. Intervals may share the endpoints and
may have zero lengths but this is just a subtle change of the algorithm.

We first describe recognition of interval graphs. Then we show how to modify
the PQ-tree approach to solve RepExt(INT).

2.2.1 Recognition using PQ-trees

Recognition of interval graphs in linear time was a long-standing open problem, first
solved by Booth and Lueker [6] using PQ-trees. Nowadays, there are two main ap-
proaches to recognition in linear time. The first one finds a feasible ordering of the
maximal cliques which can be done using PQ-trees. The second approach uses sur-
prising properties of the lexicographic breadth-first search, searches through the graph
several times and constructs a representation if the graph is an interval graph [9].

We modify the PQ-tree approach to solve RepExt(INT) in time O(n + m).
Recall the PQ-trees from Section 2.1.

Maximal Cliques. The PQ-tree approach is based on the following characterization of
interval graphs, due to Fulkerson and Gross [12]:

Lemma 2.7 (Fulkerson and Gross). A graph is an interval graph if and only if there ex-
ists an ordering of the maximal cliques such that for every vertex the cliques containing
this vertex appear consecutively in this ordering.

27



Chapter 2. Extending Interval Graphs

p

q

r

s

t

u

v pqr qrst tu tv

p
q

r
s

t
u v

Figure 2.5: An interval graph and one of its representations with denoted clique-
points.

Consider an interval representation of an interval graph. For each maximal clique,
consider the intervals representing the vertices of this clique and select a point in their
intersection. (We know that this intersection is non-empty because intervals of the real
line have the Helly property.) We call these points clique-points. For an illustration,
see Figure 2.5. The ordering of the clique-points from left to right gives the ordering
required by Lemma 2.7. Every vertex appears consecutively since it is represented by
an interval. For a clique a, we denote the assigned clique-point by cp(a).

On the other hand, given an ordering of the maximal cliques, we place clique-
points in this ordering on the real line. Each vertex is represented by the interval
containing exactly the clique-points of the cliques containing this vertex. In this way,
we obtain a valid interval representation of the graph.

Re
ognition Algorithm. The maximal cliques of an interval graph have in total O(n+
m) vertices and can be found in linear time [41]. A feasible ordering of the maximal
cliques can be found in linear time using PQ-trees. Recall their definition from Sec-
tion 2.1. Elements of E are maximal cliques of an interval graph. For each vertex v, we
introduce a restricting set Sv containing all the maximal cliques containing this vertex.
Using PQ-trees, we can find a feasible ordering of maximal cliques and recognize an
interval graph in time O(n +m).

2.2.2 Modification for R EPEXT

In the rest of the section, we call maximal cliques just as cliques. We first sketch
the algorithm. We construct a PQ-tree for the input graph, completely ignoring the
given partial representation. The partial representation gives another restriction—an
interval order ⊳ of the cliques. Using the algorithm described in Section 2.1.2, we
try to reorder the PQ-tree according to ⊳ in time O(n + m). We are going to show
the following: The partial representation is extendible if and only if the reordering
succeeds. Moreover, we can use the reordered PQ-tree to construct a representation
R extending the partial representation R′.

To construct a representation, we place clique-points on the real line according to
the ordering. We need to be more careful in this step. Since several intervals are pre-
drawn, we cannot change their representations. Using the clique-points, we construct
a representation in a similar manner as in Figure 2.5.

Now, we describe everything in detail.

Interval Ordering ⊳. For a clique a, let I(a) denote the set of all the pre-drawn inter-
vals that are contained in a. The pre-drawn intervals split the line into several parts,
traversed by the same intervals. A clique-point cp(a) can be placed only to a part
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containing exactly the intervals of I(a) and no other pre-drawn intervals.

We denote by x(a) (resp. y(a)) the leftmost (resp. the rightmost) point where
the clique-point cp(a) can be placed, formally:

x(a) = inf
{

x | the clique-point cp(a) can be placed to x
}

,

y(a) = sup
{

x | the clique-point cp(a) can be placed to x
}

.

For an example, see Figure 2.6. Notice that it does not mean that the clique-point
cp(a) can be placed to all the points between x(a) and y(a). If a clique-point can
not be placed at all, the given partial representation is not extendible.

For two cliques a and b, we define a ⊳ b if y(a) ≤ x(b). It is quite natural since
a ⊳ b implies that every correct representation has to place cp(a) to the left of cp(b).
For example, the cliques a and b in Figure 2.6 satisfy a ⊳ b.

Lemma 2.8. The relation ⊳ is an interval order.

Proof. The intervals of the interval order ⊳ correspond to the cliques of G. To a clique
a, we assign an open interval Ia = (x(a),y(a)). The definition of ⊳ exactly states
that a ⊳ b if and only if the intervals Ia and Ib are disjoint and Ia is on the left of
Ib.

If the input partial representation is either sorted or normalized, we can con-
struct a normalized representation of this interval order in time O(n). Also notice
that to solve the problem RepExt(INT), we only care about topology of the partial
representation, the exact positions of the endpoints are not important.

The Algorithm. We proceed in the following five steps. Only the first three steps
are necessary, if we just want to answer the decision problem without constructing a
representation.

1. Find maximal cliques and construct a PQ-tree, independently of the partial
representation.

2. Compute x and y for all the cliques and obtain a normalized interval repre-
sentation of an interval order ⊳.

3. Reorder the PQ-tree according to the interval order ⊳, using Section 2.1.2.

4. Place the clique-points greedily on the real line, according to the ordering.

5. Construct a representation using the clique-points.

Step 1 is the original recognition algorithm. In Step 2, we normalize the partial
representation, compute splitting of the real line into parts and compute ⊳. In Step 3,

x(a) y(a) x(b) y(b)

x

y z
w

Figure 2.6: Clique-points cp(a) and cp(b), having I(a) = {x} and I(b) = {z, w}, can
be placed to the bold parts of the real lines.
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y(a) bx(b) c

S

Figure 2.7: An illustration of the proof: The positions of the clique-points b and c,
the intervals of S are dashed.

we apply the algorithm described in Section 2.1.2. In the rest of the chapter, we
describe in detail steps four to five and prove the correctness of the algorithm.

Step 4: Pla
ing the Clique-Points. We have an ordering < of the clique-points from
Step 3. The real line has several intervals already pre-drawn by the partial represen-
tation. We place clique-points greedily from left to right, according to the ordering.

Suppose we want to place a clique-point cp(a). Let cp(b) be the last placed
clique-point. Consider the infimum over all the points where the clique-point cp(a)
can be placed and that are to the right of the clique-point cp(b). If there is a single such
point on the right of cp(b) (equal to the infimum), we place cp(a) there. Otherwise
x(a) < y(a) and we place the clique-point cp(a) to the right of this infimum by an
appropriate epsilon, for example the length of the shortest part (see definition of ⊳)
divided by n. We can easily implement this greedy subroutine in time O(n).

The following lemma states that this greedy procedure cannot fail.

Lemma 2.9. For an ordering < of the cliques compatible with the PQ-tree extending ⊳,
the greedy subroutine described in Step 4 never fails.

Proof. We prove the lemma by contradiction. See Figure 2.7. Let cp(a) be the clique-
point for which the procedure fails. Since cp(a) cannot be placed, there are some
clique-points placed on the right of y(a) (or possibly on y(a) directly). Let cp(b)
be the leftmost one of them. If x(b) ≥ y(a), we obtain a ⊳ b which contradicts
b < a since cp(b) was placed before cp(a). So, we know that x(b) < y(a). To get
a contradiction, we question why the clique-point cp(b) was not placed on the left of
y(a).

The clique-point cp(b) was not placed before y(a) because all these positions
were either blocked by some other previously placed clique-points, or they are traversed
by some pre-drawn interval not in I(b). There is at least one clique-point placed to the
right of x(b) (otherwise we could place cp(b) to x(b) or right next to it). Let cp(c)
be the right-most clique-point placed between x(b) and cp(b). Every point between
cp(c) and y(a) has to be covered by a pre-drawn interval not in I(b). Consider the set
S of all the pre-drawn intervals not contained in I(b) intersecting [c,y(a)]; depicted
dashed in Figure 2.7.

Let C be a set of all the cliques containing at least one vertex from S. Since S
induces a connected subgraph, all the cliques of C appear consecutively in the ordering
of the cliques since every pair of adjacent vertices is contained in a maximal clique.

Now, a and c both belong to C, but b does not. We assumed that c < b < a.
Since c < b and the consecutivity of C, a < b which contradicts b < a.
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Step 5: Constru
ting a Representation. We construct a representation of the graph
using the clique-points placed in the previous step, similarly to Figure 2.5. We repre-
sent each vertex as an interval containing exactly all the clique-points corresponding
to the cliques containing this vertex.

The intervals placed by the partial representation contain the correct clique-
points. Since the ordering of the clique-points is compatible with the PQ-tree, we
obtain a correct representation.

The Main Proof. Now we are ready to prove one main result of this thesis, Theorem 1.1
which states the problem RepExt(INT) can be solved in time O(n+m):

Proof of Theorem 1.1. The conditions given by the interval order ⊳ on the order of
the clique-points are clearly necessary. If it is not possible to reorder the PQ-tree
according to ⊳, the structure of the interval graph is inconsistent with the partial
representation and RepExt(INT) is not solvable. On the other hand, if the PQ-tree
can be reordered according to ⊳, Lemma 2.9 states that the partial representation is
extendible.

The time complexity of the algorithm is clearly O(n+m). The number of cliques
is at most O(n +m) and the PQ-tree can be constructed in this time. According to
Proposition 2.4, the PQ-tree can be reordered according to ⊳ in time O(n + m).
Finally, the representation can be constructed in time O(n +m).
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3 Extending Proper and Unit
Interval Graphs

In this chapter, we extend representations of proper and unit interval graphs. As was
already described in the introduction, even through these classes are known to be
equal, they behave differently for the partial representation extension problem.

In Section 3.1, we deal with proper interval graphs and the extension algorithm
is based on a simple characterization of extendible instances. In Section 3.2, we study
a more general problem of bounded representations of unit interval graphs and we
show that this problem is NP-complete. In Section 3.3, we deal with specific instances
of the bounded representation problem for which the left-to-right order of the com-
ponents is prescribed, and give an almost quadratic-time combinatorial algorithm for
this problem. In Section 3.4, we solve the RepExt(UNIT INT) problem by showing
that it can be expressed as an instance of the bounded representation problem with
prescribed ordering.

3.1 Extending Proper Interval Graphs

In this section, we describe how to extend partial representations of proper interval
graphs in time O(m + n). We also give a simple characterization of all extendible
instances.

Left-to-right ordering. Roberts [38] gave the following characterization of proper in-
terval graphs:

Lemma 3.1 (Roberts). A graph is a proper interval graph if and only if there exists a
linear ordering v1 ⊳ v2 ⊳ · · · ⊳ vn of its vertices such that the closed neighborhood of
every vertex is consecutive.

This linear order ⊳ is the left-to-right order of the intervals on the real line
in some representation. In each representation, the order of the left endpoints is
exactly the same as the order of the right endpoints, and this order is ⊳. This makes
recognition much simpler. For example of ⊳, see Figure 3.1.

How many different orderings ⊳ may a proper interval graph admit? Possibly
many but all of them have a very simple structure. Vertices u and v are called indistin-
guishable if N [u] = N [v]. The vertices of G can be partitioned into groups of (pairwise)
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v1
v2
v3

v4

v5
v6
v7

v8

R1

v1
v2
v3

v4

v5
v6

v7

v8

R2

Figure 3.1: Two proper interval representations R1 and R2 with the left-to-right
orderings v1 ⊳ v2 ⊳ v3 ⊳ v4 ⊳ v5 ⊳ v6 ⊳ v7 ⊳ v8 and v2 ⊳ v1 ⊳ v3 ⊳ v4 ⊳ v5 ⊳ v7 ⊳

v6 ⊳ v8.

indistinguishable vertices. Note that indistinguishable vertices may be represented by
the same intervals (and this is actually true for general intersection representations).
In Figure 3.1, the graph contains two groups {v1, v2, v3} and {v6, v7}. The vertices of
each group appear consecutively in the ordering ⊳ and may be reordered arbitrarily.
Deng et al. [10] proved the following:

Lemma 3.2 (Deng et al.). For a connected proper interval graph, the ordering ⊳ sat-
isfying the condition of Lemma 3.1 is uniquely determined up to local reordering of
groups and complete reversal.

This lemma is key for partial representation extension of proper interval graphs.
Essentially, we just have to deal with a unique ordering (and its reversal) and match
the partial representation on it.

We want to construct a partial ordering < which is a simple representation of all
orderings ⊳ from Lemma 3.1. There exists a proper interval representation with an
ordering ⊳ if and only if ⊳ extends either < or its reversal. According to Lemma 3.2,
< can be constructed by taking an arbitrary ordering ⊳ and making indistinguishable
vertices incomparable. For graph in Figure 3.1, we get

(v1, v2, v3) < v4 < v5 < (v6, v7) < v8,

where groups of indistinguishable vertices are put in brackets. This ordering is unique
up to reversal and can be constructed in time O(n +m) [8].

Chara
terization of Extendible Instan
es. We give a simple characterization of the
partial representation instances that are extendible. We start with connected in-
stances. Let G be a proper interval graph and R′ be a partial representation of its
induced subgraph G′. Then intervals in R′ are in some left-to-right ordering <G′, and
if two intervals are represented the same, they are incomparable in <G′.

Lemma 3.3. The partial representation R′ of a connected graph G is extendible if and
only if there exists a linear ordering ⊳ of V (G) extending <G′, and either < or its
reversal.

Proof. If there exists a representation R extending R′, then it is in some left-to-right
ordering ⊳. Clearly, the pre-drawn intervals are placed the same so ⊳ has to extend
<G′. According to Lemma 3.2, ⊳ extends < or its reversal.

Conversely, let v1 ⊳ · · · ⊳ vn be an ordering from the statement of the lemma.
We construct a representation R extending R′ as follows. We can assume that the
graph G does not contain any pair u and v of indistinguishable vertices such that u
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1 2

3

4 5 6

ℓ3 ℓ4 r3 r4 ℓ6 r6ℓ1 ℓ2 r1 r2 ℓ5 r5

Figure 3.2: Representation of a component with order 1 ⊳ 2 ⊳ 3 ⊳ 4 ⊳ 5 ⊳ 6. First,
we compute the common order of the left and the right endpoints: ℓ1 ⋖ ℓ2 ⋖ r1 ⋖ ℓ3 ⋖

ℓ4 ⋖ r2 ⋖ r3 ⋖ ℓ5 ⋖ r4 ⋖ ℓ6 ⋖ r5 ⋖ r6. The endpoints of the pre-drawn intervals split
the segment into several subsegments. We place the remaining endpoints in this order
and, within every subsegment, distributed equidistantly.

is not pre-drawn; otherwise we remove u from the graph and later put Ru = Rv. We
compute a common linear ordering ⋖ of left and right endpoints from left-to-right.
With start with the ordering ℓ1 ⋖ · · · ⋖ ℓn, into which we insert the right endpoints
r1, . . . , rn one-by-one. For vi, let vj be the right-most neighbor in the ordering ⊳.
Then, we place ri right before ℓj+1 (if it exists, otherwise we append it to the end of
the ordering).

This left-to-right common order ⋖ is uniquely determined by ⊳. Since ⊳ extends
<G′ , it is compatible with the partial representation (the pre-drawn endpoints are
ordered as in ⋖). To construct the representation, we just place the non-pre-drawn
endpoints equidistantly into the gaps between neighboring pre-drawn endpoints (or to
the left or right of R′); see Figure 3.2 for an example.

We argue correctness of the constructed representation R. It extends R′ since
the pre-drawn intervals are the same. Second, it is a correct interval representation.
Let u and v be two vertices with vi ⊳ vj and let vk be the right-most neighbor of vi
in ⊳. If vivj ∈ E(G), then ℓi ⋖ ℓk ⋖ ri and by consecutivity of N [u] in ⊳ is ℓj ⋖ ℓk. If
uv /∈ E(G), then ri ⋖ ℓk+1⋖ ℓj. In both cases, Ru and Rv intersect correctly. Last, we
argue that R is a proper interval representation. In ⋖ the order of the left endpoints
is the same as the order of the right-endpoints since ri+1 is always placed on the right
of ri in ⋖.

We conclude that the representation R can be made small enough to fit into any
open segment of the real line that contains all pre-drawn intervals.

Now, we are ready to characterize general solvable instances.

Lemma 3.4. The partial representation R′ of a graph G is extendible if and only if

1. for each component C the partial representation R′C consisting of pre-drawn in-
tervals in C is extendible, and

2. pre-drawn vertices of each component are consecutive in <G′.

Proof. The necessity of (1) is due to Lemma 3.3 applied on each component C. For (2),
if some component C would not have its pre-drawn vertices consecutive in <G′, then
the area

⋃

u∈C Ru would not be a connected segment of the real line (contradicting
existence of ◭ from Section 1.5).

Now, if the instance satisfies the both conditions, we can construct a correct
representation R extending R′ as follows. Using (2), the located components are
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C1 C2 C3 C4

Figure 3.3: An example of a graph with four components C1, . . . , C4. The pre-drawn
intervals give the order of the located components C1 ◭ C2 ◭ C3. The non-located
component C4 is placed to the right. For each component, we reserve some segment
in which we construct the representation.

ordered from left to right and we assign pairwise disjoint open segments containing all
their pre-drawn intervals (there is a non-empty gap between located components we
can use). To unlocated components we assign pair-wise disjoint open segments to the
right of the right-most located component. See Figure 3.3. For each component, we
construct a representation in its open segment, using the construction in the proof of
Lemma 3.3.

Now we are ready to prove that RepExt(PROPER INT) can be solved in time
O(n+m):

Proof of Theorem 1.2. We just use the characterization by Lemma 3.4. The conditions
(1) and (2) can be easily checked in time O(n +m). If necessary, a representation R
can be constructed in the same running time since the proofs of Lemmas 3.3 and 3.4
are constructive.

For a pseudocode, see Algorithm 4 in Appendix A.4.

3.2 Bounded Representations of Unit Interval Graphs

In this section we deal with bounded representations. An input of BoundRep con-
sists of a graph G and, for each vertex vi, a lower bound lbound(vi) and an upper
bound ubound(vi). (We allow lbound(vi) = −∞ and ubound(vi) = +∞.) The
problem asks whether there exists a unit interval representation R of G such that
lbound(vi) ≤ ℓi ≤ ubound(vi) for each interval vi. Such a representation is called a
bounded representation.

Since unit interval representations are proper interval representations, all proper-
ties of proper interval representations described in Section 3.1 carry over, in particular
properties of orderings ⊳ and <.

3.2.1 Representations in ε-grids

Endpoints of intervals can be positioned at arbitrary real numbers. For the purpose
of the algorithm, we want to work with drawings of limited resolutions. For a given
instance of the bounded representation problem, we want to find a lower bound for
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the required resolution such that this instance is solvable if and only if it is solvable
in this limited resolution.

More precisely, we want to represent all intervals so that their endpoints corre-
spond to points on some grid. For a value ε = 1

K
> 0 where K is an integer, the ε-grid

is the set of points {kε : k ∈ Z}.1 For a given instance of BoundRep, we ask which
value of ε ensures that we can construct a representation having all endpoints on the
ε-grid. So the value of ε is the resolution of the drawing.

For the standard unit interval graph representation problem a grid of size 1
n
is

sufficient [8]. In the case of BoundRep, the size of the grid has to depend on the
values of the bounds. Consider all values lbound(vi) and ubound(vi) distinct from
−∞,+∞, and express them as irreducible fractions p1

q1
, p2
q2
, · · · , pb

qb
. Then we define:

ε′ :=
1

lcm(q1, q2, . . . , qb)
, and ε :=

ε′

n
. (3.1)

We show that an ε-grid is sufficient to construct the bounded representation:

Lemma 3.5. If there exists a valid representation R′ for an input of the problem
BoundRep, there exists a valid representation R in which all intervals have end-
points on the ε-grid where ε is defined by (3.1).

Proof. We construct an ε-grid representation R from R′ in two steps. First, we shift
intervals to the left, and then we shift intervals slightly back to the right. For every
interval vi, the sizes of the left and right shifts are denoted by LS(vi) and RS(vi)
respectively. The shifting process is shown in Figure 3.4.

In the first step, we consider the ε′-grid and shift all the intervals to the left
to the closest grid-point (we do not shift an interval if its endpoints are already on
the grid). Original intersections are kept by this shifting since if x and y are two
endpoints having x ≤ y before the left-shift, then also x ≤ y after the left-shift. So if
vivj ∈ E and ℓi ≤ ℓj ≤ ri, then these inequalities are preserved by the shifting. On the
other hand, we may introduce additional intersections by shifting two non-intersecting
intervals to each other. In this case, after the shift the intervals only touch; for an
example, see vertices v2 and v4 in Figure 3.4.

The second step shifts the intervals to the right in the refined ε-grid to remove
the additional intersections created by the first step. The right-shift is a mapping

RS : {v1, . . . , vn} → {0, ε, 2ε, . . . , (n− 1)ε}

v1
v5v2

v3
v4

LS

ε′-grid

RS

ε-grid

Figure 3.4: In the first step, we shift intervals to the left to the ε′-grid. The left
shifts of v1, . . . , v5 are (0, 0, 12ε

′, 13ε
′, 0). In the second step, we shift to the right in the

refined ε-grid. Right shifts have the same relative order as left shifts: (0, 0, 2ε, ε, 0).

1If ε would not be of a form 1

K
, then the grid could not contain both left and right endpoints of

the intervals. We reserve K for the value 1

ε
in this chapter.
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having the right-shift property : For all pairs (vi, vj) with ri = ℓj , then RS(vi) ≥ RS(vj)
if and only if vivj ∈ E.

To construct such a mapping RS, notice that if we relaxed the image of RS to
[0, ε′), the reversal of LS would have the right-shift property, since it produces the
original correct representation R′. But the right-shift property depends only on the
relative order of the shifts and not on the precise values. Therefore, we can construct
RS from the reversal of LS by keeping the shifts in the same relative order. If LS(vi)
is one of the kth smallest shifts, we set RS(vi) = (k − 1)ε.2 See Figure 3.4.

We finally argue that these shifts produce a correct ε-grid representation. The
right-shift does not create additional intersections: After LS non-intersecting pairs are
at distance at least ε′ = nε, and by RS they can get closer by at most (n− 1)ε. Also,
if after LS two intervals overlap by at least ε′, their intersection is not removed by RS.
The only intersections which are modified by RS are touching pairs of intervals (vi, vj)
having ri = ℓj after LS. The mapping RS shifts these pairs correctly according to the
edges of the graph.

Next we look at the bound constraints. If, before the shifting, vi was satisfying
ℓi ≥ lbound(vi), then this is also satisfied after LS(vi) since the ε′-grid contains the
value lbound(vi). Obviously, the inequality is not broken after RS(vi). As for the
upper bound, if LS(vi) = 0 and RS(vi) = 0, then the bound is trivially satisfied.
Otherwise, after LS(vi) we have ℓi ≤ ubound(vi) − ε′, so the upper bound still holds
after RS(vi).

Additionally, Lemma 3.5 shows that it is always possible to construct an ε-grid
representation having the same topology as the original representation, in the sense
that overlapping pairs of intervals keep overlapping, and touching pairs of intervals
keep touching. Also notice that both representations R and R′ have the same order
of the intervals.

In the standard unit interval graph representation problem, no bounds on the
positions of the intervals are given, and we get ε′ = 1 and ε = 1

n
. Lemma 3.5 proves in

a particularly clean way that the grid of size 1
n
is sufficient to construct unrestricted

representations of unit interval graphs. Corneil et al. [8] show how to construct this
representation directly from the ordering <, whereas we use some given representation
to construct an ε-grid representation.

3.2.2 The Hardness of B OUNDREP

In this subsection we focus on hardness of bounded representations of unit interval
graphs. We prove Theorem 1.3 stating that BoundRep is NP-complete.

We reduce the problem from 3-Partition. An input of 3-Partition consists
of natural numbers k, M , and A1, . . . , A3k such that M

4
< Ai < M

2
for all i, and

∑

Ai = kM . The question is whether it is possible to partition the numbers Ai into k
triples such that each triple sums to exactly M . This problem is known to be strongly
NP-complete (even if all numbers have polynomial sizes) [14].

2In other words, for the smallest shifts we assign the right-shift 0, for the second smallest shifts
we assign ε, for the third smallest shifts 2ε, and so on.
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v0 v1 v2

0 1 9 18

A1 A6 A3 A4 A2 A5
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A4
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Figure 3.5: We consider the following input for 3-Partition: k = 2, M = 7,
A1 = A2 = A3 = A4 = 2 and A5 = A6 = 3. The associated unit interval graph is
depicted on top, and at the bottom we find one of its correct bounded representations,
giving 3-partitioning {A1, A3, A6} and {A2, A4, A5}.

Proof of Theorem 1.3. According to Lemma 3.5, if there exists a representation satis-
fying the bound constraints, there also exists an ε-grid representation with this prop-
erty. Since the length of ε given by (3.1), written in binary, is polynomial in the size
of the input, all endpoints can be placed in polynomially-long positions. Thus we can
guess the bounded representation and the problem belongs to NP.

Let us next prove that the problem is NP-hard. For a given input of 3-Partition,
we construct the following unit interval graph G. For each number Ai, we add a path
P2Ai

(of length 2Ai − 1) into G as a separate component. For all vertices x in these
paths, we set bounds

lbound(x) = 1 and ubound(x) = k · (M + 2).

In addition, we add k + 1 independent vertices v0, v1, . . . , vk and make their positions
in the representation fixed:

lbound(vi) = ubound(vi) = i · (M + 2).

See Figure 3.5 for an illustration of the reduction. Clearly, the reduction is polynomial.

We now argue that the bounded representation problem is solvable if and only
if the given input of 3-Partition is solvable. Suppose first that the bounded rep-
resentation problem admits a solution. There are k gaps between the fixed intervals
v0, . . . , vk each of which has space less than M + 1. (The length of the gap is M + 1
but the endpoints are taken by vi and vi+1.) The bounds of the paths force their
representations to be inside these gaps, and each path lives in exactly one gap. Hence
the representation induces a partition of the paths.

Now, the path P2Ai
needs space at least Ai in every representation. The repre-

sentations of the paths may not overlap and the space in each gap is less than M + 1,
hence the sum of all Ai’s in each part is at most M . Since the total sum of Ai’s is
exactly kM , the sum in each part has to be M . Thus the obtained partition solves
the 3-Partition problem.

Conversely, every solution of 3-Partition can be realized in this way.
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u
C1

v
C2

u v

E1 E2

Figure 3.6: The positions of the vertices u and v are fixed by the bound constraints.
The component C1 can only be represented in a single way, since its reversal would
block space for the component C2.

3.3 Bounded Representations with Prescribed Ordering

In this section, we deal with the BoundRep problem when a fixed ordering ◭ of the
components is prescribed. First we solve the problem using linear programming, then
we describe additional structure of bounded representations and using this structure
we construct an almost quadratic-time algorithm solving the linear programs.

3.3.1 LP Approach for B OUNDREP

According to Lemma 3.2, each component of G can be represented in at most two
different ways, up to local reordering of groups of indistinguishable vertices. Unlike
the case of proper interval graphs, we cannot arbitrarily choose one of the orderings,
since neighboring components restrict each other’s space. For example, only one of
the two orderings for the component C1 in Figure 3.6 makes a representation of C2

possible.

In the algorithm, we process components C1 ◭ C2 ◭ · · · ◭ Cc from left to right.
For each component Ct, we calculate by the algorithm of Corneil et al. the partial
ordering < described in Section 3.1 and its reversal. The elements that are incom-
parable by these partial orderings are vertices of the same group of indistinguishable
vertices. From <, we want to construct a correct linear orderings ⊳.

Lemma 3.6. Suppose there exists some bounded representation R. Then there exists a
bounded representation R′ such that for every indistinguishable pair vi and vj having
lbound(vi) ≤ lbound(vj) it holds that ℓ

′
i ≤ ℓ′j.

Proof. For a representation, we call a pair (vi, vj) bad if vi and vj are indistinguish-
able, lbound(vi) ≤ lbound(vj) and ℓi > ℓj. We describe a process which itera-
tively constructs R′ from R, by constructing a sequence of representations R =
R0,R1, . . . ,Rk = R′, where the positions in a representation Rs are denoted by ℓsi ’s.

In each step s, we create Rs from Rs−1 by fixing one bad pair (vi, vj): we set
ℓsi = ℓs−1j and the rest of the representation remains the same. Since vi and vj are
indistinguishable and Rs−1 is correct, the obtained Rs is a representation. Regarding
bound constraints,

lbound(vi) ≤ lbound(vj) ≤ ℓs−1j = ℓsi < ℓs−1i ≤ ubound(vi),

so the bounds of vi are satisfied.
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Now, in each Rs the set of all left endpoints is a subset of the set of all left
endpoints of R. In each step, we move one left-endpoint to the left, so each endpoint
is moved at most n−1 times. Hence the process terminates after O(n2) iterations and
produces R′ without bad pairs are requested.

For< and its reversal, we use Lemma 3.6 to construct linear orderings⊳: If vi and
vj belong to the same group of indistinguishable vertices and lbound(vi) < lbound(vj),
then vi ⊳ vj. If lbound(vi) = lbound(vj), we choose any order ⊳ between vi and vj.

We obtain two total orderings ⊳, and we solve a linear program for each of them.
Let v1 ⊳ v2 ⊳ · · · ⊳ vk be one of these orderings. We denote the right-most endpoint
of a representation of a component Ct by Et. Additionally, we define E0 = −∞. The
linear program has variables ℓ1, . . . , ℓk, and it minimizes the value of Et. Let ε be
defined as in (3.1). We solve:

Minimize: Et := ℓk + 1,

subject to: Et−1 + ε ≤ ℓ1, (3.2)

ℓi ≤ ℓi+1, ∀i = 1, . . . , k − 1, (3.3)

ℓi ≥ lbound(vi), ∀i = 1, . . . , k, (3.4)

ℓi ≤ ubound(vi), ∀i = 1, . . . , k, (3.5)

ℓi ≥ ℓj − 1, ∀vivj ∈ E, vi ⊳ vj , (3.6)

ℓi + ε ≤ ℓj − 1, ∀vivj /∈ E, vi ⊳ vj . (3.7)

We solve the same linear program for the other ordering of the vertices of Ct. If
none of the two programs is feasible, we report that no bounded representation exists.
If exactly one of them is feasible, we keep the values obtained for ℓ1, . . . , ℓk and Et,
and process the next component Ct+1. If the two problems are feasible, we keep the
one such that the value of Et in the solution is smaller, and process Ct+1.

Lemma 3.7. Every bounded ε-grid representation of every component Ct with the left-
to-right order v1 ⊳ · · · ⊳ vk satisfies all constraints (3.4)–(3.7).

Proof. Constraints of types (3.4) and (3.5) are satisfied since the representation is
bounded. Constraints of type (3.6) give correct representation of intersecting pairs
of intervals. The non-intersecting pairs of an ε-grid representation are at distance at
least ε which makes constraints of type (3.7) satisfied.

Now, we are ready to show:

Proposition 3.8. The BoundRep problem can be solved in polynomial time with re-
spect to r by the algorithm above where r is the size of the input.

Proof. Concerning the running time, it depends polynomially on the sizes of n and ε,
which are polynomial in the size of the input r. It remains to show correctness.

Suppose that the algorithm returns a candidate for a bounded representation.
The formulation of the linear program ensures that it is a correct representation:
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Constraints of type (3.2) and (3.3) make the representation respect⊳, and the drawings
of the distinct components are disjoint. Constraints of type (3.4) and (3.5) enforce
that the given lower and upper bounds for the positions of the intervals are satisfied.
Finally, constraints of type (3.3), (3.6) and (3.7) make the drawing of the vertices of
a particular component Ct be a correct representation.

Suppose next that a bounded representation exists. According to Lemma 3.5 and
Lemma 3.6, there also exists an ε-grid bounded representation R′ having the order in
the indistinguishable groups as defined above. So for each component Ct, one of the
two orderings ⊳ constructed for the linear programs agree with the left-to-right order
of Ct in R′.

We want to show that the representation of each component Ct in R′ gives a
solution to one of the two linear programs associated to Ct. We denote by E ′t the
value of Et in the representation R′, and by Emin

t the value of Et obtained by the
algorithm after solving the two linear programming problems associated to Ct. We
show by induction on t that Emin

t ≤ E ′t, which specifically implies that Emin
t exists and

at least one of the linear programs for Ct is solvable.

We start with C1. As argued above, the left-to-right order in R′ agrees with
one of the orderings ⊳, so the representation of C1 satisfies the constraints (3.3).
Since E0 = −∞, it also satisfies the constraint (3.2). By Lemma 3.7, the rest of the
constraints are also satisfied. Thus the representation of C1 gives a feasible solution
for one program and gives Emin

1 ≤ E ′1.

Assume now that, for some Ct with t ≥ 1, at least one of the two linear pro-
gramming problems associated to Ct admits a solution, and from induction hypothesis
Emin

t ≤ E ′t. In R′, two neighboring components are represented at distance at least
ε. Additionally, if v1 refers to a vertex of Ct+1, ℓ1 ≥ E ′t + ε ≥ Emin

t + ε. Therefore,
representation of Ct+1 in R′ satisfies the constraint (3.2) and similarly as above the
rest of the conditions. So the representation of Ct+1 in R gives some solution to one
of the programs and we get Emin

t+1 ≤ E ′t+1.

In summary, if there exists a bounded representation, for each component Ct at
least one of the two linear programming problems associated to Ct admits a solution.
Therefore, the algorithm returns a correct bounded representation R (as discussed in
the beginning of the proof). We note that R does not have to be an ε-grid representa-
tion since the linear program just states that non-intersecting intervals are at distance
at least ε. To construct an ε-grid representation if necessary, we can proceed as in the
proof of Lemma 3.5.

For a pseudocode, see Algorithm 5 in Appendix A.5.

We note that it is possible to reduce the number of constraints of the linear
program from O(n2) to O(n). Using the ordering constraints (3.3), we can replace the
groups of constraints (3.6) and (3.7) by a linear number of constraints as follows. For
each vj , let vi be the rightmost vertex such that vi ⊳ vj and vivj /∈ E. Then we only
state the constraint (3.6) for vi+1 and vj , and the constraint (3.7) for vi and vj. This
is equivalent to the original formulation of the problem.
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3.3.2 The partially ordered set Rep

Let the graph G in consideration be a connected unit interval graph. We study struc-
tural properties of its representations. Suppose that we fix some partial left-to-right
order < of the intervals from Section 3.1, so that only indistinguishable vertices are
incomparable, and also we fix some positive ε = 1

K
. For most of this section, we work

just with lower bounds and completely ignore upper bounds.

We define Rep as the set of all ε-grid representations in the left-to-right ordering
extending < satisfying the lower bounds. We define a very natural partial ordering ≤
on Rep: We put R ≤ R′ if and only if ℓi ≤ ℓ′i for every vi ∈ V (G). In this section, we
study structural properties of the poset (Rep,≤).

If ε ≤ 1
n
, it holds that Rep 6= ∅ since the graph G is a unit interval graph and

there always exists an ε-grid representation R far to the right satisfying the lower
bound contraints.

The Semilatti
e Stru
ture. Let us assume that lbound(vi) > −∞ for some vi ∈ V (G),
otherwise the structure of Rep is not very interesting. Let S be a subset of Rep. The
infimum inf(S) is the greatest representation R ∈ Rep such that R ≤ R′ for every
R′ ∈ S. In a general poset, infimums may not exist, but if they exist, they are always
unique. For Rep, we show:

Lemma 3.9. For every non-empty S ⊆ Rep, the infimum inf(S) exists.

Proof. We construct the requested infimum R as follows:

ℓi = min{ℓ′i : ∀R
′ ∈ S}, ∀vi ∈ V (G).

Notice that the positions in R are well-defined since the position of each interval in
each R′ is bounded and always on the ε-grid. Clearly, if R is a correct representation,
it is the infimum inf(S). It remains to show that R ∈ Rep.

Clearly all positions in R belong to the ε-grid and satisfy the lower bound con-
straints. Let vi and vj be two vertices. The values ℓi and ℓj in R are given by two
representation R1,R2 ∈ S (so ℓi = ℓ1i and ℓj = ℓ2j). Notice that the left-to-right order
in R has to extend <: If vi < vj , then ℓi = ℓ1i ≤ ℓ2i < ℓ2j = ℓj since R1 minimizes the
position of vi and the left-to-right order in R2 extends <. Concerning correctness of
the representation of the pair vi and vj , we suppose that ℓi = ℓ1i ≤ ℓ2j = ℓj, otherwise
we swap vi and vj .

• Let vivj ∈ E(G). Then ℓ2j ≤ ℓ1j since R2 minimized the position of vj . Since R1

is a correct representation, ℓ1j − 1 ≤ ℓ1i . So ℓj − 1 ≤ ℓi ≤ ℓj, and the intervals v1
and v2 intersect.

• The other case is when vivj /∈ E(G). Then ℓ1i ≤ ℓ2i ≤ ℓ2j − 1 − ε since R1

minimized the position of vi, R2 is a correct representation and vi < vj in both
representations. So also vi and vj do not intersect in R as requested.

So R represents correctly each pair vi and vj , and hence R ∈ Rep.
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A poset is a (meet)-semilattice if for every pair of elements a, b the infimum
inf({a, b}) exists. Lemma 3.9 shows that the poset (Rep,≤) forms a (meet)-semilattice.
Similarly as Rep, we could consider a poset set of all (ε-grid) representations satisfying
both the lower and the upper bounds. The structure of this poset would be a complete
lattice having infimums and supremums of all subsets. Lattices and semilattices are
frequently studied and posets which are lattices satisfy very strong algebraic properties.

The Left-most Representation. We are interested in a specific representation in Rep,
called the left-most representation. An ε-grid representation R ∈ Rep is the left-most
representation if R ≤ R′ for every R′ ∈ Rep; so the left-most representation is left-
most in each interval at the same time. We note that the notion of the left-most
representation does not make sense if we consider general representations (not on the
ε-grid). The left-most representation is the infimum inf(Rep), and thus by Lemma 3.9
we get:

Corollary 3.10. The left-most representation always exits and it is unique.

There are two algorithmic motivations for studying left-most representations.
First, in the linear program of Section 3.3.1 we need to find a representation mini-
mizing Et. Clearly, the left-most representation is minimizing Et and in addition it is
minimizing the rest of the endpoints as well. The second motivation is that we want to
construct a representation satisfying the upper bounds as well. It seems reasonable to
try to place every interval as far to the left as possible and the left-most representation
is a good candidate for a bounded representation.

Lemma 3.11. There exists a representation R′ satisfying both lower and upper bound
constraints if and only if the left-most representation R satisfies the upper bound con-
straints.

Proof. Since R ∈ Rep, it satisfies the lower bounds. If R satisfies the upper bound
constraints, it is a bounded representation. On the other hand, let R′ be a bounded
representation. Then

lbound(vi) ≤ ℓi ≤ ℓ′i ≤ ubound(vi), ∀vi ∈ V (G),

and the left-most representation is also a bounded representation.

3.3.3 Left-Shifting of Intervals

Suppose that we construct some initial ε-grid representation which is not the left-
most representation. We want to transform this initial representation in Rep into
the left-most representation of Rep by applying the following simple operation called
left-shifting. The left-shifting operation shifts one interval of the representations by ε
to the left such that this shift maintains the correctness of the representation; for an
example see Figure 3.7a. The main goal of this section is to prove that by left-shifting
we can always produce the left-most representation.

Proposition 3.12. For ε = 1
K

and K ≥ n, an ε-grid representation R ∈ Rep is the
left-most representation if and only if it is not possible to shift any single interval to
the left by ε while maintaining correctness of the representation.
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Before proving the proposition, we describe some additional combinatorial struc-
ture of left-shifting. An interval vi is called fixed if it is in the left-most position and
cannot ever be shifted more to the left, i.e., ℓi = min{ℓ′i, ∀R

′ ∈ Rep}. For example, an
interval vi is fixed if ℓi = lbound(vi). A representation is the left-most representation
if and only if every interval is fixed.

Obstru
tion Digraph. An interval vi, having ℓi > lbound(vi), can be left-shifted if it
does not make the representation incorrect, and the incorrectness can be obtained in
two ways. First, there could be some interval vj , vj ⊳ vi such that vivj /∈ E(G) and
ℓj +1+ ε = ℓi; we call vj a left-obstruction of vi. Second, there could be some interval
vj , vi ⊳ vj such that vivj ∈ E(G) and ℓi + 1 = ℓj (so vi and vj are touching); then we
call vj a right-obstruction of vi. In both cases, we first need to move vj before moving
vi.

For the current representation R, we define the obstruction digraph H on the
vertices of G as follows. We put V (H) = V (G) and (vi, vj) ∈ E(H) if and only if
vj is an obstruction of vi. For an edge (vi, vj), if vj ⊳ vi, we call it a left-edge; if
vi ⊳ vj, we call it a right-edge. As we apply left-shifting, the structure of H changes;
see Figure 3.7b.

Lemma 3.13. An interval vi is fixed if and only if there exists an oriented path in H
from vi to vj such that ℓj = lbound(vj).

Proof. Suppose that vi is connected to vj by a path in H . By definition of H , vxvy ∈
E(H) implies that vy has to be shifted before vx. Thus vj has to be shifted before
moving vi which is not possible since ℓj = lbound(vj).

On the other hand, suppose that vi is fixed, i.e., ℓi = inf{ℓ′i : ∀R
′}. Let H ′ be

the induced subgraph of H of the vertices vj such that there exists an oriented path
from vi to vj . If for all vj ∈ H ′, ℓj > lbound(vj), we can shift all vertices of H ′ by ε
to the left which constructs a correct representation and contradicts that vi is fixed.
Therefore, there exists vj ∈ H ′ having ℓj = lbound(vj) as requested.

For example in Figure 3.7, if ℓ2 = lbound(v2), then the intervals v2, v4, v3, v7
and v5 are fixed. Also, we can easily prove:

Lemma 3.14. If ε = 1
K

and K ≥ n
2
, the obstruction digraph H is acyclic.
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Figure 3.7: (a) A representation modified by left-shifting of v6 and v4. (b) The
corresponding obstruction digraph H for each of the representations. Only sinks of
the obstruction digraph can be left-shifted.
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Proof. Suppose for contradiction that H contains some cycle u1, . . . , uc. This cycle
contains a left-edges and b right-edges. Recall that if (ui, ui+1) is a left-edge, then
ℓui+1

= ℓui
− 1− ε, and if it is a right-edge, ℓui+1

= ℓui
+ 1 (and similarly for (uc, u1)).

If we go along the cycle from u1 to u1, the initial and the final positions have to be
the same. Therefore a(1 + ε) = b.

Now if this equation holds, then a has to be a multiple of K. Therefore a ≥ K
and b ≥ K + 1, and thus n ≥ c = a+ b ≥ 2K + 1 which is not possible.

We note that the assumption K ≥ n
2
is necessary. For every ε = 1

K
, there

exists a representation of a graph with 2K + 1 vertices having a cycle in H . The
graph contains two cliques v0, . . . , vK−1 and w0, . . . , wK such that vi is also adjacent to
w0, . . . , wi. Then the assignment ℓv0 = 0, ℓvi = ℓv0+iε and ℓwi

= ℓv0+1+iε is a correct
representation. Observe that H contains a cycle wkvk−1wk−1vk−2wk−2 . . . v1w1v0w0wk.
See Figure 3.8 for K = 3.

Prede
essors of Poset Rep. A representation R′ ∈ Rep is a predecessor of R ∈ Rep

if R′ < R and there is no representation R̄ ∈ Rep such that R′ < R̄ < R. We
denote the predecessor relation by ≺. In a general poset, predecessors may not exist.
But they always exist for a poset of a discrete structure like (Rep,≤): Indeed, there
are finitely many representations R̄ between any R′ < R, and thus the predecessors
always exist. Also, for any two representations R′ < R, there exists a finite chain of
predecessors R′ = R0 ≺ R1 ≺ · · · ≺ Rk = R.

For the poset (Rep,≤), we are able to fully describe the predecessor structure:

Lemma 3.15. The representation R′ is a predecessor of R if and only if R′ is obtained
from R by applying one left-shifting operation.

Proof. Clearly, if R′ is obtained from R by one left-shifting, it is a predecessor of R.

On the other hand, suppose we have R′ < R. Let H be the obstruction digraph
of R and H̄ be the subgraph of H induced by the intervals having different positions
in R and R′. Then there are no directed edges from H̄ to H \ H̄ (otherwise R′ would
be an incorrect representation). According to Lemma 3.14, the digraph H̄ is acyclic.
Therefore, it contains at least one sink vi. By left-shifting vi in R, we create a correct
representation R̄ ∈ Rep. Clearly, R′ ≤ R̄ ≺ R, and so R′ is a predecessor of R if and
only if R′ = R̄.

Proof of Left-shifting Proposition. The main proposition of this subsection is a simple
corollary of Lemma 3.15.

R

v0

v1 v2

w0 w1 w2

w3

v0

v1

v2

w0

w1

w2

w3 H

Figure 3.8: An ε-grid representation for ε = 1
3 on the left and the obstruction digraph

H containing a cycle on the right.
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R and R′

v1
v2

v3 = γ1
v4 v5 = γ2

v6 v7 = γ3

v8

v9

v10 = γ4

Γ1 Γ2 Γ3 Γ4

Figure 3.9: Both representations R andR′ in one figure, with intervals ofR′ depicted
in bold. The left endpoints of intervals of each group are enclosed by dashed curves,
and these curves are ordered from left to right according to <.

Proof of Proposition 3.12. The left-most representation R is inf(Rep), so it has no
predecessors and nothing can be left-shifted. On the other hand, if R < R′, there is
a chain of predecessors in between which implies that it is possible to left-shift some
interval.

3.3.4 Preliminaries for the Almost Quadratic-time Algorit hm

Before describing the almost quadratic-time algorithm, we present several results which
simplify the graph and the description of the algorithm.

Pruned Graph. The obstruction digraph H may contain many edges since each ver-
tex vi can have many obstructions. But if vi has many, say, left-obstructions, these
obstructions have to be positioned the same. If two intervals u and v have the same
position in a correct unit interval representation, then N [u] = N [v] and they are indis-
tinguishable. Our goal is to construct a pruned graph G′ which replaces each group of
indistinguishable vertices of G by a single vertex. This construction is not completely
straightforward since indistinguishable vertices may have different lower and upper
bounds.

Let Γ1, . . . ,Γk be the vertices partitioned by groups of indistinguishable vertices
(and the groups are ordered by < from left to right). We construct a unit interval graph
G′, where the vertices are γ1, . . . , γk with lbound(γi) = max{lbound(vj) : vj ∈ Γi},
and the edges E(G′) correspond to the edges between the groups of G.

Suppose that we have the left-most representation R′ of the pruned graph G′

and we want to construct the left-most representation R of G. Let Γℓ be a group. We
place each interval vi ∈ Γℓ as follows. Let γℓ

← be the first non-neighbor of γℓ on the
left and γℓ

→ be the right-most neighbor of γℓ (possibly γℓ
→ = γℓ). We set

ℓi = max{lbound(vi), ℓγℓ
←

+ 1 + ε, ℓγℓ
→

− 1}, (3.8)

and if γℓ
← does not exist, we ignore it in max. The meaning of this formula is to

place each interval as far to the left as possible while maintaining the structure of R′.
Figure 3.9 contains an example of the construction of R.

Before proving correctness of the construction of R, we show two general prop-
erties of the formula (3.8). The first lemma states that each interval vi ∈ Γℓ is not
placed in R too far from the position of γℓ is R

′.

Lemma 3.16. For each vi ∈ Γℓ, it holds

ℓγℓ − 1 ≤ ℓi ≤ ℓγℓ . (3.9)
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Proof. The first inequality is true since ℓγℓ − 1 ≤ ℓγℓ
→

− 1 ≤ ℓi holds according to (3.8)
and the ordering < for R′. The second inequality holds since since R′ is a correct
bounded representation, and so ℓγℓ is greater than or equal to each term in (3.8).

The second lemma states that the representations R and R′ are intertwining
each other. If R is drawn on top of R′, then the vertices of each group Γℓ are in
between of γℓ−1 and γℓ; see Figure 3.9.

Lemma 3.17. For each vi ∈ Γℓ, ℓ > 1, it holds

ℓγℓ−1
< ℓi ≤ ℓγℓ , (3.10)

Proof. The second inequality holds by (3.9). For the first inequality, there are two
possible cases why the groups Γℓ−1 and Γℓ are distinct:

• The first case is when γℓ
← is a neighbor of γℓ−1. Then ℓγℓ−1

≤ ℓγℓ
←

+ 1 < ℓi; the
first inequality holds since γℓ

←γℓ−1 ∈ E(G′) and R′ is a correct representation,
and the second inequality is given by (3.8).

• The second case is when γℓ
→ is a non-neighbor of γℓ−1. Then ℓγℓ−1

< ℓγℓ
→

−1 ≤ ℓi
by the fact that γℓ−1γ

ℓ
→ /∈ E(G′) and by (3.8).

In both cases, we get γℓ−1 < ℓi.

Now, we are ready to show correctness of the construction of R.

Proposition 3.18. From the left-most representation R′ of the pruned graph G′, we can
construct the correct left-most representation R of G by placing the intervals according
to (3.8).

Proof. We argue the correctness of the representation R. Let vi and vj be a pair
of vertices of G. Let vivj ∈ E(G). If vi and vj belong to the same group Γℓ, they
intersect each other at position ℓγℓ by (3.9). Otherwise let vi ∈ Γℓ and vj ∈ Γℓ′, and
assume that Γℓ < Γℓ′. Then ℓi ≤ ℓγℓ ≤ ℓj by the intertwining property (3.10). Also,
ℓj ≤ ℓγℓ′ ≤ ℓγℓ

→
≤ ℓi + 1 since γℓ′ is a right neighbor of γℓ and (3.9). Therefore,

ℓi ≤ ℓj ≤ ℓi + 1 and vi intersects vj in R. Now, let vivj /∈ E(G), vi ∈ Γℓ, vj ∈ Γℓ′

and vi < vj . Then ℓi ≤ ℓγℓ ≤ ℓγℓ′
←

≤ ℓj − 1 − ε by (3.8) and (3.9), so vi and vj do not
intersect. So the assignment R is a correct representation of G.

It remains to show that R is the left-most representation of G. We can identify
each γℓ with one interval vi ∈ Γℓ having lbound(vi) = lbound(γℓ); for an example see
Figure 3.9. So G′ can be viewed as an induced subgraph of G. We want to show that
the intervals of G′ are represented in R exactly the same as in R′. Since R|G′ (R
restricted to G′) is some representation of G′ and R′ is the left-most representation of
G′, ℓ′γℓ ≤ ℓγℓ for every γℓ. By (3.9), we get ℓ′γℓ = ℓγℓ .

We know thatR|G′ is the left-most representation, or in other words each interval
of G′ is fixed in R. The rest of the intervals are placed so that they are either trivially
fixed by ℓi = lbound(vi), or they have as obstructions some fixed intervals from G′, in
which case they are fixed by Lemma 3.13. Therefore, every interval of G is fixed and
R is the left-most representation.

48



3.3. Bounded Representations with Pres
ribed Ordering

For the pruned graph G′, the obstruction digraph H has in and out-degree at
most two. Each interval has at most one left-obstruction and at most one right-
obstruction, and these obstructions are always the same. More precisely, if vj is a
left-obstruction of vi, then vj = vi←, whereas if vj is a right-obstruction of vi, then
vj = vi→.

The pruning operation can be done in time O(n +m), so we may assume that
our graph G is already pruned and contains no indistinguishable vertices. And the
structure of obstructions in G can be computed in time O(n+m) as well.

Position Cy
le. For each interval in some ε-grid representation, we can write its posi-
tion in this form:

ℓi = αi + βiε, αi ∈ Z, βi ∈ ZK , (3.11)

where ε = 1
K
. In other words, αi is an integer position of vi in the grid and βi describes

how far is this interval from this integer position.

Concerning left-shifting, the values βi are more important. We can depict ZK =
{0, . . . , K − 1} as a cycle with K vertices where the value decreases clockwise. The
value βi assigns to each interval vi one vertex of the cycle. The cycle ZK together with
marked positions of βi’s is called the position cycle. A vertex of the position cycle
is called taken if some βi is assigned to it, and empty otherwise. The position cycle
allows us to visualize and work with left-shifting very intuitively. When an interval
vi is left-shifted, βi cyclically decreases by one, so βi moves clockwise along the cycle.
For an illustration, see Figure 3.10.

If (vi, vj) is a left-edge of H , then βj = βi − 1, and if (vi, vj) is a right-edge, then
βi = βj. So if vj is an obstruction of vi, βj has to be very close to βi (either at the
same position or at the next clockwise position). If there is a big empty space in the
clockwise direction from βi, the interval vi can be left-shifted many times (or till it
becomes fixed by ℓi = lbound(vi)). Notice that if βi is very close to βj, it does not
mean that ℓi is very close to ℓj because the values αi and αj are ignored in the position
cycle.

3.3.5 The Almost Quadratic-Time Algorithm for B OUNDREP

We want to solve an instance of BoundRep with a prescribed ordering ◭. We work
with an ε-grid which is different from the one in Section 3.2.1. The new value of ε is

β1

β2

β3

β4

β5

β6

−

β1
β2

β3

β4

β5

β6

−

Figure 3.10: The position cycle with β1, . . . , β6 is on the left. We can shift β2 in
clockwise direction towards β6, which gives a new representation with a new position
cycle on the right. We note that after left-shifting, v6 is not necessarily an obstruction
of v2.
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the value given by (3.1) refined n times, so

ε =
1

n2
· ε′.

Lemma 3.5 applies for this value of ε as well, so if the instance is solvable, there exists
a solution which is on this ε-grid.

The algorithm works exactly as the algorithm of Subsection 3.3.1. The only
difference is that we can solve the linear program in time O(n2 + nD(r)), and now
we describe how to do it. We assume that the input component is already pruned,
otherwise we prune it and use Proposition 3.18 to complete the representation. We
expect that the left-to-right order ⊳ of the vertices is given. The algorithm requires
timeO(nD(r)) since the bounds are given in form pi

qi
and we need to perform arithmetic

operations with these bounds.

Overview. The algorithm for one linear program works in three basic steps:

1. We construct an initial ε-grid representation (in ordering⊳) having ℓi ≥ lbound(vi)
for all intervals, using the algorithm of Corneil et al. [8].

2. We shift the intervals to the left while maintaining correctness of the represen-
tation until the left-most representation is constructed, using Proposition 3.12.

3. We check whether the left-most representation satisfies the upper bounds. If
so, we have the left-most representation satisfying all bound constraints. This
representation solves the linear program of Subsection 3.3.1 and minimizes Et.
Otherwise, the left-most representation does not satisfy the upper bound con-
straints, and thus by Lemma 3.11 no representation satisfying the upper bound
constraints exists, and the linear program has no solution.

Input Size. Let r be the size of the input. A standard complexity assumption is that
we can operate with polynomially large numbers (having O(log r) bits in binary) in
constant time, to avoid extra factor O(log r) in the complexity of most of the algo-
rithms. However, the value of ε given by (3.1) might require O(r) digits when written
in binary. The assumption that we can computate with numbers having O(r) digits in
contant time would break most of the computational models. Therefore, our computa-
tional model requires a larger time for arithmetic operations with numbers having O(r)
digits in binary. For example, the best known algorithm for multiplication/division
requires time O(D(r)).

The problem is that a straightforward implementation of our algorithm working
with the ε-grid would require time O(n2rc) for some c instead of O(n2+nD(r)). There
is an easy way out. Instead of computing with long numbers having O(r) digits, we
mostly compute with short numbers having just O(log r) digits. Instead of the ε-grid,
we mostly work in a larger ∆-grid where ∆ = 1

n2 . The algorithm computes with the
long numbers only in two places. First, some initial computations concerning the input
are performed. Second, when the shifting makes some interval fixed, the algorithm
estimes the final ε-grid position of the interval. All these computations can be done
in total time O(nD(r)) and we describe everything in detail later.
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Left-Shifting. The basic operation of the algorithm is the LeftShift procedure which
we describe here. We deal separately with fixed and unfixed intervals (and some inter-
vals might be fixed initially). Unfixed intervals are on the ∆-grid and fixed intervals
have precise positions calculated on the ε-grid. We place only unfixed intervals on the
position cycle for the ∆-grid. At any moment of the algorithm, each vertex of the
position cycle is taken by at most one βi; this is true for the initial representation and
the shifting keeps this property.

We define the procedure LeftShift(vi) which shifts vi from the position ℓi
into a new position ℓ′i such that the representation remains correct. The procedure
LeftShift(vi) consists of two steps:

1. Since vi is unfixed, it has some βi placed on the position cycle. Let k be such
that the vertices βi+1, . . . , βi+k of the position cycle are empty and the vertex
βi + k + 1 is taken by some βb. Then a candidate for the new position of vi is
ℓ̄i = ℓi − k∆.

2. We need to ensure that this shift from ℓi to ℓ̄i is valid with respect to lbound(vi)
and the positions of the fixed intervals. Concerning the lower bound, we cannot
shift further than lbound(vi). Concerning the fixed intervals, the shift is limited
by positions of fixed obstructions of vi. If vj is a fixed left-obstruction, we cannot
shift further than ℓj + 1+ ε, and if vj′ a fixed right-obstruction, we cannot shift
further than ℓj′ − 1.

The resulting position after applying LeftShift(vi) is

ℓ′i = max{ℓ̄i, lbound(vi), ℓj + 1 + ε, ℓj′ − 1}. (3.12)

Lemma 3.19. If the original representation R is correct, than the LeftShift(vi)
procedure produces a correct representation R′.

Proof. Clearly, the lower bound for vi is satisfied in R′. The shift of vi from ℓi to ℓ
′
i can

be viewed as a repeated application of the left-shifting operation from Section 3.3.3.
We just need to argue that each left-shifting operation can be applied till the position
ℓ′i is reached.

If at some point, the left-shifting operation could not be applied, there would
have to be some obstruction vj of vi. There is no unfixed obstruction since all vertices
of the position cycle βi + 1, . . . , βi + k are empty. And vj cannot be fixed as well
since we check positions of both possible obstructions. So there is no obstruction vj .
Therefore, by repeated applying the left-shifting operation, the interval vi gets at a
position ℓ′i and the resulting representation is correct.

After LeftShift(vi), if ℓ̄i is not a strict maximum of the four terms in (3.12),
the interval vi becomes fixed; either trivially since ℓ′i = lbound(vi), or by Lemma 3.13
since vi becomes obstructed by some fixed interval. In such a case, we remove βi from
the position cycle.

Fast Implementation of Left-Shifting. Since we apply the LeftShift procedure re-
peatedly, we want to implement it in time O(1). Considering the terms in (3.12),
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the first term ℓ̄i is a short number (on the ∆-grid) and the remaining terms are long
numbers (on the ε-grid). We first compare ℓ̄i to the remaining terms which are three
comparisons of short and long numbers and we are going to show how to compare them
in O(1). If ℓ̄i is a strict maximum, we use it for ℓ′i. Otherwise, we need to compute
the maximum of the remaining three terms which takes time O(D(r)). But then the
interval vi becomes fixed, and so this costly step is done exactly n times, and takes
the total time O(nD(r)).

Lemma 3.20. With the total precomputation time O(nD(r)), it is possible to compare
ℓ̄i to the remaining terms in (3.12) in time O(1) per LeftShift procedure.

Proof. Initially, we do the following precomputation for the lower bounds. By the
input, we have b lower bounds given in the form p1

q1
, . . . , pb

qb
as irreducible fractions. For

each bound, we first compute its position (αi, βi) on the ε-grid; see (3.11).

If lbound(vi) ≪ lbound(vj) for some vertices vi and vj, then lbound(vi) is never
achieved since the graph is connected and every representation takes space at most
n. Therefore we can increase lbound(vi) without any change in the solution of the
instance. More precisely, let α = maxαi. Then we modify each bound by setting
αi := max{α − n − 1, αi}. In addition, we shift all the bounds by substructing a
constant C such that each αi − C ∈ [0, n + 1]. Concerning βi, we round the position
(αi, βi) down to a position (αi, β̄i) of the ∆-grid. These precomputations can be done
for all lower bounds in time O(nD(r)).

Suppose that we want to find out whether ℓ̄i ≤ lbound(vj) = αj + βj · ε where
ℓ̄i is in the ∆-grid. Then it is sufficient to check whether ℓ̄i ≤ αj + β̄j∆ which can be
done in constant-time since both αj and β̄j are short numbers.

When vj becomes fixed, its precise position is computed using (3.12). Then we
compute the values ℓj − 1 and ℓj + 1 + ε used in (3.12) and round them down to
the ∆-grid. Using these precomputed values, ℓ̄i can be compared with the remaining
terms in (3.12) in time O(1). When an interval becomes fixed, time O(D(r)) is used.
Since each interval becomes fixed exactly once, this rounding takes the total time
O(nD(r)).

Notice that the representation is constructed in a position shifted by C. Later,
before checking the upper bound, we shift the whole representation back.

Shifting Phases. All shifting of the algorithm is done by repeated application of the
LeftShift procedure. Using Lemma 3.19, we know that the representation created
in each step is correct. We apply the procedure in such a way that each interval is
almost always shifted by almost one. Recall that ∆ = 1

n2 and the position cycle has
n2 vertices. The initial ∆-grid representation is obtained by the algorithm of Corneil
et al. [8]. We shift it such that ℓi ≥ lbound(vi) for each vi and ℓi ≤ lbound(vi) +∆ for
some vi. In such a case, each interval is shifted in total by at most O(n), and in total
we apply the LeftShift procedure O(n2) times.

The initial representation obtained by the algorithm of Corneil et al. [8] places
all intervals in such a way that βi’s are positioned equidistantly in the position cycle;
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refer to the left-most position cycle in Figure 3.11. (So there is a gap of size n between
each consecutive pair of βi’s.)

The shifting of unfixed intervals proceeds in two phases. The first phase creates
one big gap by clustering all βi’s in one part of the cycle. To do so, we apply the
LeftShift procedure to each interval, in the order given by the position cycle. Of
course, some intervals might become fixed and disappear from the position cycle. We
obtain one big gap of size at least n(n− 1). Again, refer to Figure 3.11.

In the second phase, we use this big gap to shift intervals one by one, which
also moves the cluster along the position cycle. Again, if some interval becomes fixed,
it is removed from the position cycle. The second phase finishes when each interval
becomes fixed and the left-most representation is constructed. For an example, see
Figure 3.12.

Putting Together. For a pseudocode, see Algorithm 7 in Appendix A.7. First, we show
correctness of the shifting algorithm and its complexity:

Lemma 3.21. For a component having n vertices such that the size of the input is r, the
shifting algorithm construct a correct left-most representation in time O(n2 + nD(r)).

Proof. First, we argue correctness of the algorithm. The algorithm starts with an
initial representation which is correct and satisfies the lower bounds. By Lemma 3.19,
after applying each LeftShift procedure, the resulting representation is still correct.
The algorithm keeps a correct list of fixed intervals which is increased by shifting. So
after finitely many applications of the LeftShift procedure, every interval becomes
fixed, and we obtain the left-most representation.

Concerning complexity, all precomputations take total time O(nD(r)). Using
Lemma 3.20, each LeftShift(vi) procedure can be applied in time O(1) unless vi
becomes fixed. The first phase is applying the LeftShift procedure n− 1 times. In
the second phase, each interval is shifted by at least n−1

n
(unless it becomes fixed).

Since each interval can be shifted by at most O(n) from its initial position, the second
phase applies the LeftShift procedure O(n2) times. So the total running time of
the algorithm is O(n2 + nD(r)).

We are ready to prove that BoundRep with a prescribe ordering ◭ can be
solved in time O(n2 + nD(r)):

−

β1

β4

β5 β2

β3

−

β1β4

β5 β2

β3

−

β1β4β5

β2

β3

−

β1β4β5

β3

−

β1β4β5β3

Figure 3.11: The position cycle during the first phase, changing from left to right.
The first phase clusters the βi’s by moving β4, β5, β2 and β3 towards β1. When
LeftShift(v2) is applied, v2 becomes fixed and β2 disappears from the position cycle.
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−

β1β4β5β3

−

β4β5β3
β1

−

β5β3
β1

· · · −

Figure 3.12: The position cycle during the second phase, changing from left to right.
We shift βi’s across the big gap till all βi’s disappear.

Proof of Theorem 1.4. We proceed exactly as in the algorithm of Section 3.3.1, so we
process the components C1 ◭ · · · ◭ Cc from left to right, and for each of them we solve
two linear programs. For each linear program, we find the left-most representation
using Lemma 3.21, and we test for this representation (shifted back by C) whether the
upper bounds are satisfied. According to Lemma 3.11, the linear program is solvable
if and only if the left-most representation satisfy the upper bounds, and clearly the
left-most representation minimizes Et. The time complexity of the algorithm is O(n2+
nD(r)) and the proof of correctness is exactly the same as in Proposition 3.12.

We finally present an FPT algorithm for BoundRep with respect to the number
of components c. The algorithm is based on Theorem 1.4.

Proof of Corollary 1.5. There are c! possible left-to-right orderings of the components
of G. For each of them, we can decide in time O(n2 + nD(r)) whether there exists a
bounded representation in the order, using Theorem 1.4. So the total time necessary
is O((n2 + nD(r))c!).

3.4 Extending Unit Interval Graphs

The RepExt(UNIT INT) problem can be solved using Theorem 1.4. We just need to
show that it is a particular instance of BoundRep with the known ordering ◭ of the
components:

Proof of Corollary 1.6. The graph G contains unlocated components and located com-
ponents. Similarly to Section 3.1, unlocated components can be placed far to the right
and we can deal with them using standard recognition algorithm.

Concerning located components C1, . . . , Cc, they have to be ordered from left
to right, which gives the required ordering ◭. We straightforwardly construct the
instance of BoundRep with this ◭ as follows. For each pre-drawn interval vi at
position ℓi, we put lbound(vi) = ubound(vi) = ℓi. For the rest of the intervals, we
set no bounds. Clearly, this instance of BoundRep is equivalent with the original
RepExt(UNIT INT) problem. And we can solve it in time O(n2 + nD(r)) using The-
orem 1.4.
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4 Extending Chordal Graphs
and Their Subclasses

There are four types Fixed, Sub, Add, and Both which form the following lattice,
given by Figure 4.1. For a type T, we denote by Gen(T, T ′) a set of all tree T which we
can generate from T ′ using the modification of type T. In addition, if T ′ contains pre-
drawn subtrees, trees in Gen(T, T ′) contain these pre-drawn subtrees as well (possibly
modified by subdivision). The ordering of types given by the lattice has this property:
If T ≤ T′, then Gen(T, T ′) ⊆ Gen(T′, T ′).

Add

Both

Sub

Fixed

Figure 4.1: The lattice formed by four types Fixed, Sub, Add, and Both.

Now, whether a given instance is solvable depends on the set Gen(T, T ′); so if
this set contains more trees, it only helps for solving the problem. Let T ≤ T′. If an
instance of Recog

∗ or RepExt is solvable for type T, then it is solvable for type T′

as well. And equivalently, if it is not solvable for T′, it is also not solvable for T.

For the types Add and Both (and Subfor PROPER P-in-P and P-in-P), the set
Gen(T, T ′) contains a tree having an arbitrary tree T as a subtree. Therefore, the
Recog

∗ problem for these types is equivalent to the standard Recog problem, and
we can use known polynomial-time algorithms.

For PROPER P-in-P and P-in-P classes, the types Add and Sub behave differ-
ently. The type Add allows to extend the ends of the paths. The type Sub allows to
expand the middle of the path but if the endpoint of the path is contained in some
pre-drawn subpath, it remains to be contained after the subdivision. The type Both

makes the problems equivalent to the Recog and RepExt problems for the real line.

Indistinguishable Verti
es. Let u and v be two vertices of G such that N [u] = N [v].
These two vertices are called indistinguishable since they can be represented exactly
the same, having Ru = Rv (a common property of all intersection representations).
From the structural point of view, groups of indistinguishable vertices are not very
interesting. The goal is to construct a pruned graph where each group is reprented by
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a single vertex. For that, we need to be little careful since we cannot prune pre-drawn
vertices.

For an arbitrary graph, its groups of indistinguishable vertices can be located
in time O(n + m) [41]. We prune the graph in the following way. If u and v are
indistinguishable and u is not pre-drawn, we eliminate u from the graph (and for the
representation, we can put Ru = Rv). The resulting pruned graph has the following
property: If two vertices u and v indistinguishable, they are both pre-drawn. For the
rest of this chapter, we expect that all input graphs are pruned.

Maximal Cliques. There is the following property of maximal cliques, valid for all
representations by subtrees inside a tree. Let x ∈ T and consider the set K = {u :
u ∈ V (G), x ∈ Ru}. Clearly, K is a clique of G.

On the other, let K be a maximal clique of G. Subtrees of tree have the Helly
property which states that every pairwise intersecting collection of subtrees have a
common intersection as a subtree. Since the subtrees representing K are pair-wise
intersecting, the common intersection RK = ∩u∈KRu is a subtree of T . This subtree
RK is not intersected by any other Rv for v /∈ K (otherwise K would not be a maximal
clique). Thus the subtrees RK corresponding to different maximal cliques are pairwise
disjoint. For example, if |T | is smaller than the number of maximal cliques of G, the
graph is clearly not representable in T .

4.1 Subpaths-in-Path Graphs

In this section, we deal with classes PROPER P-in-P and P-in-P. The results obtained
here are used as tools for P-in-T and T-in-T graphs in Section 4.2.

4.1.1 Polynomial Cases

First we deal with all polynomial cases. Also, we describe several concepts as minimum
span, useful in the rest of the paper.

Non-�xed Type Re
ognition. The only limitation for recognition of interval graphs
inside a given path is the length of the path. In all three types Sub, Add and Both,
we can produce a path as long as necessary. (With a trivial exception T ′ = P0 for
Sub, for which the instance is solvable only if G = Kn.) For a subpath-in-path
representation, only the order of the endpoints from left to right is important, not
the exact positions. In a tree T with at least 2n vertices, every possible ordering is
realizable.

Thus the problems are equivalent to the standard recognition of interval graphs
on the real line. For PROPER P-in-P, it can be solved in timeO(n+m), for example [33,
8]. Similarly for P-in-P, it can be solved in linear-time [6, 9].

Both Type Extension. This extension type is equivalent with the partial representation
extension problems of interval graphs on the real line. Again only the ordering of the
endpoints is important. The only change here is that some of the endpoints are already
placed. By subdividing, we can place any amount of the endpoints between any two
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endpoints (not sharing the same position). Also, the path can be extended to the
left and to the right which allows to place any amount of endpoints to the left of the
left-most pre-drawn endpoint and to the right of the right-most pre-drawn endpoint.
So any extending ordering can be realized in the Both type.

The partial representation extension problem for interval graphs on the real line
was first considered in [29]. The paper gives algorithms for both classes INT and
PROPER INTand does not explicitly deal with representations sharing endpoints but
the algorithms are easy to modify. The results of Theorems 1.1 and 1.2, and [5] show
that the both extension problems are solvable in time O(n+m).

Sub Type Extension. It is possible to modify the algorithms of Theorems 1.1 and 1.2
to deal with the Sub type. Instead of describing details of these representations, we
show a reduction of the Subtype extension to the Bothtype extension which we can
solve in time O(n +m) as discussed above.

Theorem 4.1. The both Sub type extension problems RepExt(PROPER P-in-P,Sub)
and RepExt(P-in-P,Sub) can be solved in time O(n+m).

Proof. First, we describe the algorithm for P-in-P. Let p1, . . . , pt be the vertices of the
path T ′. If the graph contains unlocated components, we first deal with them. They
can be placed if one of the following works, and otherwise the representation is not
extendible.

• If there is only a single located component, then at least one of p1 and pt has
to be not contained in any pre-drawn interval. If so, we can subdivide that end
of the path T ′ and place all the unlocated components there. Otherwise, the
unlocated components cannot be placed at all.

• If there are more located components, they have to be ordered correctly from
left to right C1 ◭ · · · ◭ Cc; see Section 1.5. Now, we can subdivide an edge
between these components and place the unlocated components there.

If we succeed, we remove unlocated components from the graph. What remains is to
deal with the located components.

If at least one of p1 and pt is contained in some pre-drawn interval, we modify
both the path and the graphs. If v1, . . . , vk ∈ C1 such that p1 ∈ Rv1 , . . . , Rvk , we modify
as follows. First, we extend the path by one by adding p0 attached to p1. We introduce
an additional pre-drawn interval v← adjacent exactly to v1, . . . , vk with Rv← = {p0}
and we modify R′vi = Rvi ∪ {p0}. Exactly the same modification introducing pt+1 and
v→ is used for the right-end if there is some v ∈ Cc such that pt ∈ Rv.

We use the described algorithm for RepExt(P-in-P,Both) for the modified
graph and the modified path, which runs in time O(n + m). What remains is to
argue correctness, which we do only for left end of T ; for the right end the argument
is symmetric. If nothing pre-drawn contains p1, the edge p1p2 can be subdivided as
necessary, thus creating the exactly same situation as in Both type. On the other
hand, if p0 was added, everything with exception of v1, . . . , vk has to be represented
on the right of v← which is placed on p0.
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But there is a single problem we need to deal with. The newly added edge p0p1
can be subdivided. There are two possibilities. If |Rvi| ≥ 2 for each i, the subdivision
of p0p1 is equivalent to subdivision of p1p2 which is correct in the original problem.
Now let |Rvi | = 1 for some i. Then N(vi) has to be a complete subgraph. In such
a case, we can revert the subdivision of p0p1 as follows. Let p′1, . . . , p

′
s be the newly

created vertices by subdividing p0p1. For each v ∈ N(vi) (of course, with exception of
v←), we put R′v = Rv \ {p

′
1, . . . , p

′
s} ∪ {p1}, and we remove p′1, . . . , p

′
s by contractions.

Now, by removing p0, pt+1, v← and v→ (of course, only if they are added), we
obtain a correct representation of G inside a subdivision of T ′ extending the partial
representation. Concerning PROPER P-in-P, we use almost the same approach. One
change is that we append two vertices p̄0 and p0 (resp. pt+1 and p̄t+1) to the end
of T ′ and put Rv← = {p̄0, p0} (resp. Rv→ = {pt+1, p̄t+1}), so the resulting partial
representation is proper. Concerning the case |Rvi | = 1 for some i, it is trivial since
k = 1 and N(vi) is empty, and the component C1 has to be the single interval.

For a pseudocode, see Algorithm 8 in Appendix A.8.

General Properties of PROPER P-in-P . In each representation, we have some ordering
⊳ of intervals from left to right. This is an ordering of left endpoints from left to right
(and at the same time the ordering of the right endpoints). In Section 3.1, we describe
this ordering ⊳ and a partial ordering < in details. Since the graphs we consider in
this chapter are pruned, the indistinguishable vertices which are incomparable in <
are ordered by the partial representation.

Now let us consider the types Fixed and Add. The space on the path is limited
and it is important to know how much space does a component C require. We denote
it by minspan(C). Let R be some representation of C, pi be the left-most vertex of
T ′ contained in representation of C and pj be the right-most such vertex. Then

minspan(C) =

{

min∀R{j − i+ 1} if some representation of C exists,

+∞ otherwise.

Lemma 4.2. For every component C (both located, or unlocated), the value minspan(C)
can be computed in O(n +m) (together with a realizing representation).

Proof. First, we deal with an unlocated component. We start by constructing any
ordering ⊳ of the left endpoints of intervals from left to right from Lemma 3.2, in time
O(n + m) using the algorithm of Corneil et al. [8]. Using this ordering, we want to
produce a representation as small as possible.

Let ℓi denote the left endpoint and ri the right endpoint of the interval vi. From
ordering v1 ⊳ · · · ⊳ vn, we want to compute a common ordering ⋖ of both the left
endpoints and the right endpoints, exactly as in the proof of Lemma 3.3. The starting
point is an ordering of just the left endpoints ℓ1⋖ · · ·⋖ℓn. Into this ordering, we insert
right endpoints r1, . . . , rn one-by-one. A right endpoint ri is inserted right before ℓj
where vj is the left-most non-neighbor of vi on the right (or if such vj does not exist,
we append ri to the end). For an example of construction of ⋖, see Figure 4.2.
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v1 v2 v3 v4 v5 v6 v1 v2 v3 v4 v5 v6

Figure 4.2: The ordering ⋖ is ℓ1 ⋖ ℓ2 ⋖ r1 ⋖ ℓ3 ⋖ ℓ4 ⋖ r2 ⋖ r3 ⋖ ℓ5 ⋖ r4 ⋖ ℓ6 ⋖ r5 ⋖ r6
for the component on the left. The constructed smallest possible representation of the
component C on the right, with minspan(C) = 8.

Now, we construct the smallest representation as follows. Let p1, . . . , pk be the
vertices of the tree T . We construct an assignment f which maps endpoints into T .
Then for a vertex vi we put Rvi = {pj : f(ℓi) ≤ pj ≤ f(ri)}. The mapping f is
constructed for endpoints one-by-one, according to ⋖. If the previous endpoint in ⋖

had assigned vertex pi, we assign to the current endpoint: If the current endpoint is
a right endpoint and the previous endpoint is a left endpoint, assign pi. Otherwise
assign pi+1. In total, the component needs 2n − ℓ vertices of T where ℓ denotes the
number of changes from a left endpoint to a right endpoint in the ordering ⊳; so 2n−ℓ
is the value of minspan(C). For an example, see Figure 4.2. The total complexity of
the algorithm is clearly O(n + m). The constructed representation is correct and it
can be argued the same as in the proof of Lemma 3.3.

Concerning minimality notice that in a pruned graph it always holds ℓi 6= ℓj and
ri 6= rj for every pair vi and vj . We argue that we use gaps as small as possible. Only
a right endpoint ri following a left endpoint ℓj can be placed at the same position.
The other case of a right endpoint ri followed by a left endpoint ℓj requires a gap of
size one; otherwise Rvi would intersect Rvj but vivj /∈ E. So the gaps are minimal and
we construct a smallest representation and give the value minspan(C) correctly.

Concerning a located component, we just modify the above approach slightly.
The ordering ⊳ has to be compatible with the ordering of the pre-drawn intervals. For
a group of indistinguishable intervals, all its intervals are pre-drawn and we know their
ordering from left to right. So we just test whether < and its reversal can be used.
We have (at most) two possibilities for ⊳ which give the same minspan(C) but the
minimum representations might be differently shifted, and we are able to construct
both of them. If the pre-drawn intervals do not belong to one group, the ordering ⊳

is uniquely defined (if it is compatible with the ordering of pre-drawn intervals at all).

We compute the common ordering ⋖ as before and place the endpoints in this
ordering. The only exception is that the endpoints of the pre-drawn intervals are fixed.
Additionally, we place the endpoints on the left of the left-most pre-drawn endpoint
as far to the right as possible and similarly as far to the left as possible on the right
of the right-most pre-drawn endpoint. The constructed representation is the smallest
possible and gives minspan(C).

General Properties of P-in-P . We use the maximal clique approach described in Sec-
tion 2.2.1. Recall properties of maximal cliques from introduction of this chapter. For
a component C, we denote by cl(C) the number of maximal cliques of C. Since the
subtrees RK corresponding to the maximal cliques are disjoint, they have to be ordered
from left to right. There is the following well-known property of this ordering [12]:
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Lemma 4.3 (Fulkerson and Gross). A graph is an interval graph if and only if there
exists an ordering of the maximal cliques K1 < · · ·Kcl(C) such that for every vertex
the cliques containing this vertex appear consecutively in this ordering.

We quickly argue correctness of the lemma. Clearly, in an interval representa-
tion, all maximal cliques corresponding to one vertex v are appearing consecutively
(otherwise the clique in between would be intersected by Rv in addition). On the
other hand, having an ordering < of the maximal cliques from the statement, we can
construct a representation as follows. To each clique Ki, assign one vertex pi of T (this
vertex corresponds to the clique point from Section 2.2.1). Now for each vertex v, we
assign Rv = {pi : v ∈ Ki}. Since the maximal cliques appear consecutively, we assign
a subpath to each interval. Also, the representation is correct.

For types Fixed and Add, we again consider minimum span defined exactly as
for proper interval graphs above. Clearly, minspan(C) ≥ cl(C). We show:

Lemma 4.4. For an unlocated component C, minspan(C) = cl(C) if C is a component
of an interval graph. We can find a smallest representation in time O(n+m).

Proof. We start by identifying maximal cliques in time O(n + m), using algorithm
of Rose et al. [41]. To construct a smallest representation, we find an ordering from
Lemma 4.3, using the PQ-tree algorithm [6] in time O(n + m). If such an ordering
does not exist, the graph G is not an interval graph and no representation exists. If
the ordering exists, we can construct a representation using exactly cl(C) vertices of
the path as described above.

Fixed Type Re
ognition. We just need to use the values minspan we already know
how to compute.

Proposition 4.5. Both Recog
∗(PROPER P-in-P,Fixed) and Recog

∗(P-in-P,Fixed)
can be solved in time O(n+m).

Proof. We process components C1, . . . , Cc one-by-one and place them from left to
right on T ′. If

∑c

i=1minspan(Ci) ≤ |T ′|, we can place the components using the
smallest representation from Lemma 4.2 for PROPER P-in-P, resp. Lemma 4.4 for
P-in-P. Otherwise, the path is too small and the representation cannot be constructed.

Add Type Extension, PROPER P-in-P . We use the same technique as in the algorithm
of Section 3.3.1 for unit interval graphs, with the difference that we can use minimum
spans and Lemma 4.2 instead of linear programming.

Theorem 4.6. The problem RepExt(PROPER INT,Add) can be solved in time O(n+
m).

Proof. Since the path can be expanded to left and to right as much as necessary, we
can place unlocated components far to the left. So we only need to deal with located
components, ordered C1 ◭ · · · ◭ Cc from left to right. We place components from left
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to right. When we place Ci, it has to be placed on the right of Ci−1. We have (at
most) two possible smallest representations corresponding to two different orderings
of Ci. We test whether at least one of them can be placed on the right of Ci−1 and
pick the one minimizing the right-most vertex of T taken by Ci (leaving maximum
possible space for Ci+1, . . . , Cc). If neither representation can be placed, the extension
algorithm fails.

Now, if the algorithm finishes, it construct a correct representation. On the
other hand, we place each component as far to the left as possible (while restricted
by the previous components on the left). So if Ci cannot be placed, there exists no
representation extending the partial representation.

4.1.2 NP-complete Cases

The basic gadgets of the reduction are paths. They have the following minimum spans.

Lemma 4.7. For P-in-P, minspan(Pn) = n. For PROPER P-in-P and n ≥ 2, minspan(Pn) =
n + 2.

Proof. For P-in-P, the number of maximal cliques of Pn is n. For PROPER P-in-P, the
ordering ⋖ is

ℓ0 ⋖ ℓ1 ⋖ r0 ⋖ ℓ2 ⋖ r1 ⋖ · · ·⋖ ℓi ⋖ ri−1 ⋖ · · ·⋖ ℓn ⋖ rn−1 ⋖ rn.

So there are n changes from ℓi to ri−1 and the minimum span is n + 2.

We reduce the problem from 3-Partition. The input of 3-Partition consists
of integers k, M and A1, . . . , A3k such that M

4
< Ai <

M
2
for each Ai and

∑

Ai = kM .
It asks whether it is possible to partition Ai’s into k triples such that the sets Ai of
each triple sum to exactly M .1 This problem is known to be strongly NP-complete
(even with all integers of a polynomial size) [14].

Theorem 4.8. The both Fixed type problems RepExt(PROPER P-in-P,Fixed) and
RepExt(P-in-P,Fixed) are NP-complete.

Proof. The described reduction works for both PROPER P-in-P and P-in-P with small
modifications. For a given input of 3-Partition (with M ≥ 4), we construct a graph
G and its partial representation. As the fixed tree we choose T ′ = P(M+1)k, with the
vertices p0, . . . , p(M+1)k.

Now, the graph G contains two types of gadgets as separate components. First,
it contains k + 1 split gadgets S0, . . . , Sk which split the path into k gaps of equal
sizes M . Then it contains 3k take gadgets T1, . . . , T3k. A take gadget Ti takes in each
representation space at least Ai of one of the k gaps.

For this reduction, the gadgets are particularly simple. The split gadget Si is just
a single pre-drawn vertex vi with Rvi = {p(M+1)i}. The split gadgets clearly split the
path into k equal gaps of size M . The take gadget Ti is a PAi

for P-in-P, resp. PAi−2

1Notice that if a subset of Ai’s sums to exactly M it has to be a triple due to size conditions.
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v0 v1 v2T1 T6 T3 T4 T2 T5

v0

v1

v2

T1

T2

T3

T4

T5

T6

Figure 4.3: An example of the reduction for the input set of 3-Partition: k = 2,
M = 7, A1 = A2 = A3 = A4 = 2 and A5 = A6 = 3. On top, the constructed subpath-
in-path graph is depicted. On bottom, the partial representation (depicted in bold) is
extended.

for PROPER P-in-P. According to Lemma 4.7, minspan(Ti) = Ai. The representation
is extendible if and only if it is possible to place the take gadgets into the k gaps. For
an illustration, see Figure 4.3. The reduction is clearly polynomial.

To conclude the proof, we show that the partial representation is extendible
if and only if the corresponding 3-Partition input has a solution. If the partial
representation is extendible, the take gadgets Ti are divided into the k gaps on the path
which forms a partition. Based on conditions for sizes of Ai’s, each gap contains exactly
three take gadgets of the total minimum span M ; thus the partition solves the 3-

Partition problem. On the other hand, a solution of 3-Partition describes how to
place the take gadgets into the k gaps and construct the extending representation.

Corollary 4.9. The problem RepExt(P-in-P,Add) is NP-complete.

Proof. We use the above reduction with one additional pre-drawn interval v attached
to everything in G. We put Rv = {p0, . . . , p(M+1)k}, so it contains the whole tree T ′.
Now since representation of each Ti has to intersect Rv, it has to be placed inside of
the k gaps as before.

4.1.3 Parametrized Complexity

In this subsection, we study parametrized complexity. The parameters are the number
of components c, the number of pre-drawn intervals k and the size of the tree t.

By Number of Components. In the above reduction, one might ask whether it is pos-
sible to make the reduction graph G connected. For P-in-P, it is indeed possible to add
universal vertices adjacent to everything in G and thus making G connected, as in the
proof of Corollary 4.9. The following results answers this question for PROPER P-in-P
negatively (unless P = NP):

Proposition 4.10. The problem RepExt(PROPER P-in-P,Fixed) is fixed-parameter
tractable in the number of components c, solvable in time O((n+m)c!).

Proof. There is c! possible orderings of the components from left to right, and we test
each of them. We show that for a given ordering of components, we can solve the
problem in time O(n + m); thus gaining the total time O((n + m)c!). We solve the
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problem almost the same as in the proof of Theorem 4.6. The only difference is that
we deal with all the components instead of only the located components.

We process the components from left to right. When we process Ci, we place it
on the right of Ci−1 as far to the left as possible. For unlocated Ci, we can take any
ordering. For located Ci, we test both orderings and take the one placing Ci further
to the left. We construct the representation in time O(n + m) and the algorithm is
clearly correct; see the proof of Theorem 4.6 for more details.

It is necessary for NP-hardness of the problem RepExt(PROPER P-in-P,Fixed)
to have some pre-drawn subpaths. On the other hand, also some unlocated components
are necessary. If all the components would be located, there is a unique ordering ◭

and we can test it in time O(n+m) as described above. In general, for c components
and c′ located components, we need to test only c!/c′! different orderings.

By Number of Pre-drawn Intervals. In the reduction in Theorem 4.8, we need to have
k pre-drawn intervals. One could ask, whether the problems becomes simpler with a
small number of pre-drawn intervals. We answer this negatively. For PROPER P-in-P,
the problem is in XP and W[1]-hard with respect to k. For P-in-P, we show that it is
W[1]-hard.

We start with two closely related problems BinPacking and GenBinPacking.
In the both problems, we have k bins and n items of integer sizes. The question is
whether we can pack (partition) these items into the k bins when sizes of the bins are
limited. For BinPacking, all the bins have the same size. For GenBinPacking, the
bins have different sizes. Formally:

Problem: BinPacking

Input: Integers k, ℓ, V and A1, . . . , Aℓ.
Question: Does there exist a k-partition P1, . . . ,Pk of A1, . . . , Aℓ such

that
∑

Ai∈Pj
Ai ≤ V for every Pj .

Problem: GenBinPacking

Input: Integers k, ℓ, V1, . . . , Vk and A1, . . . , Aℓ.
Question: Does there exist a k-partition P1, . . . ,Pk of A1, . . . , Aℓ such

that
∑

Ai∈Pj
Ai ≤ Vj for every Pj .

Lemma 4.11. The problems BinPacking and GenBinPacking are polynomially
equivalent.

Proof. Obviously BinPacking is a special case of GenBinPacking. On the other
hand, let k, ℓ, V1, . . . , Vk and A1, . . . , Aℓ be an instance of GenBinPacking. We
construct an instance k′, ℓ′, V ′ and A′1, . . . , A

′
ℓ′ of BinPacking as follows. We put

k′ = k, ℓ′ = ℓ+k and V ′ = 2 ·maxVi+1. The weights of the first ℓ items are the same,
i.e, A′i = Ai for i = 1, . . . , ℓ. The additional items A′ℓ+1, . . . , A

′
ℓ+k are called large and

we put A′ℓ+i = V ′ − Vi for i = 1, . . . , k.

Now, each bin has to contain exactly one large item since two large items take
more space than V ′. After placing large items into the bins, we obtain bins of sizes
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V1, . . . , Vk in which we have to place the remaining items. This corresponds exactly to
the original GenBinPacking instance.

If the input sizes are encoded in binary, the problem is NP-complete even for
k = 2. The more interesting version which we use here is that the sizes are encoded in
unary so all sizes are polynomial. In such a case, the BinPacking problem is known
to be solvable in time tO(k) using dynamic programming where t is the total size of
all items. And it is W[1]-hard with respect to the parameter k [24]. Similar holds for
RepExt(PROPER P-in-P,Fixed):

Proof of Theorem 1.7. For a given instance of the BinPacking problem, we can solve
it by RepExt(PROPER P-in-P,Fixed) in a similar manner as in the reduction in
Theorem 4.8. As T ′, take a path P(V +1)k. As G, take PAi−2 for each Ai and pre-drawn
vertices v0, . . . , vk such that Rvi = {p(V+1)i}. The rest of the argument is exactly as in
the proof of Theorem 4.8.

Now, we want to solve RepExt(PROPER P-in-P,Fixed) using 2k instances of
GenBinPacking (which is polynomially equivalent to BinPacking), where k is the
number of pre-drawn intervals.

First we deal with located components C1 ◭ · · · ◭ Cc. For each component, we
have two possible orderings < and using Lemma 4.2 we get (at most) two possible
smallest representations which might be differently shifted. In total, we have at most
2c ≤ 2k possible representations keeping C1, . . . , Cc as small as possible leaving maxi-
mum possible gaps for unlocated components. We test each of these representations.

Now, let C ′1, . . . , C
′
c′ be the unlocated components. For each C ′i, we compute

minspan(C ′i) using Lemma 4.2. The goal is to place unlocated components in the
c + 1 gaps between representations of the located components C1, . . . , Cc. We can
solve this problem using GenBinPacking as follows. We have k + 1 bins of sizes
equal to the gaps between the representations of C1, . . . , Cc. We have c′ items of
sizes Ai = minspan(C ′i). The solution of GenBinPacking tells in which gaps the
unlocated components can be placed. If there exists no solution, this specific smallest
representation of located components can not be used.

We can test all 2k possible representations. Thus we get the required weak
truth-table reduction.

For a pseudocode of one reduction, see Algorithm 9 in Appendix A.9.

Corollary 4.12. The problem RepExt(PROPER P-in-P,Fixed) is W[1]-hard and be-
longs to XP, solvable in time nO(k) where k is the number of pre-drawn intervals.

Proof. Both obtained easily by Theorem 1.7.

Proposition 4.13. The problems RepExt(P-in-P,Fixed) and RepExt(P-in-P,Add)
are W[1]-hard with respect to the parameter k where k is the number of pre-drawn
intervals.

Proof. Modify the reduction in Theorem 4.8 and Corollary 4.9 as in the proof of
Theorem 1.7.
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By Size of the Path.We show that the NP-complete cases are fixed-parameter tractable
with respect to the size of the path t. It is easy to find a solution by a brute-force
algorithm:

Proposition 4.14. For t the size of T ′, the problems RepExt(PROPER P-in-P,Fixed)
and RepExt(P-in-P,Fixed) are fixed-parameter tractable with respect to the parame-
ter t. They can be solved in time O(n+m+ f(t)) where f(t) = t2t

2

.

Proof. In a pruned graph, the non-pre-drawn vertices has to be represented pairwise
different. There are at most t2 possible different subpaths of a path with t vertices
so the pruned graph can contain at most t2 non-pre-drawn vertices; otherwise the
extension is not possible. We can test every possible assignment of t2 non-pre-drawn
vertices to t2 subpaths, and for each assignment we test whether it is a correct repre-
sentation.

4.2 Path and Chordal Graphs

We present several results concerning P-in-T and T-in-T classes. We use many results
from Section 4.1 as basic tools here.

4.2.1 Polynomial Cases

The recognition problem for types Add and Both is equivalent to standard recogni-
tion without any additional tree T ′. Indeed, we can modify T ′ by adding an arbitrary
tree to it. If the input graph is either P-in-T or T-in-T, there exists a tree T ′′ in which the
graph can be represented. We produce T by attaching T ′′ to T ′ in any way. Clearly,
the graph can be represented in T as well, completely ignoring the part T ′ for example.

For path graphs, the original recognition algorithm is due to Gavril [15] in time
O(n4). The current fastest algorithm is by Schäffer [43] in time O(nm). For chordal
graphs, there is a beautiful simple algorithm in time O(n +m) by Rose et al. [41].

4.2.2 NP-complete Cases

All the remaining cases from the table of Figure 1.7 are NP-complete. We describe
a modification of the reduction of Theorem 4.8 for path and chordal graphs. We
start with the simplest reduction for the Fixed type and then modify it for the other
problems.

Fixed Type. For Fixed type, we can avoid pre-drawn subtrees, using an additional
structure of the tree.

Proposition 4.15. Both Recog
∗(P-in-T,Fixed) and Recog

∗(T-in-T,Fixed) are NP-
complete.

Proof. We again reduce from 3-Partition with an input k and M , and for technical
purposes let M ≥ 4. We construct a graph G and a tree T as follows. The tree T is a
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v0 v1 v2T1 T6 T3 T4 T2 T5
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Figure 4.4: For the same input set of 3-Partition, on top the constructed graph is
depicted. On bottom, a representation is constructed, giving a solution {A1, A3, A6}
and {A2, A4, A5}.

path P(M+1)k (denote its vertices p0, . . . , p(M+1)k) with additional three paths of length
two attached to every vertex p(M+1)i, for each i = 0, . . . , k; see Figure 4.4.

Each split gadget Si is a star, depicted on the left of Figure 4.4. When the
split gadgets are placed as in the figure, they split the tree into k gaps exactly as the
pre-drawn vertices in the proof of Theorem 4.8. Each take gadget Ti is the same path
PAi

as before.

What remains is to argue correctness of the reduction. We claim that each Rvi

contains at least one branch vertex (actually exactly one, since there are exactly n+1
branch vertices in T ). If some Rvi would only contain non-branch vertices, then it
would not be possible to represent three disjoint neighbors u1, u2 and u3 of this vi
since each Ruj

\Rvi has to be non-empty.

Now since each branch vertex is taken by one Rvi , the tree T is split into k gaps
as before. Since |Ai| > 2, each Ti can be represented only inside of these gaps. Notice
that the total sum of free vertices in the gaps has to be kM , and therefore the split
gadgets has to be represented entirely in the attached stars as in Figure 4.4. The rest
of the reduction works exactly as in Theorem 4.8.

Sub Type. By modifying the above reduction, we get:

Theorem 4.16. The problems Recog
∗(P-in-T,Sub) and Recog

∗(T-in-T,Sub) are NP-
complete.

Proof. We need to modify the two gadgets from the reduction in Theorem 4.15 in such
a way that subdivision of the tree does not help in placing them. Subdivision only
increases the number of non-branch vertices. Thus a take gadget Ti requires Ai branch
vertices. Similarly, the split gadget Si is more complicated. See Figure 4.5 on top.

The tree T is constructed as follows. We start with a path P(M+1)k with vertices
p0, . . . , p(M+1)k. To each vertex p(M+1)i we attach a subtree isomorphic to the trees
in Figure 4.5 on bottom. To the other vertices of the path, we attach one leaf per a
vertex.

66



4.2. Path and Chordal Graphs

· · · · · ·

vi vi+1

Ta Tb Tc

vi

Si

· · ·

Ti

}Ai triangles

Figure 4.5: On top, the split gadget Si on left and the take gadget Ti on right. On
bottom, a part of the tree T , the small vertices are added by subdivision. The gap
between two split gadgets contains three take gadgets Ta, Tb and Tc giving one triple
{Aa, Ab, Ac} with Aa +Ab +Ac = M .

Clearly, for a given solution of 3-Partition, we can construct a correct rep-
resentation in a subdivided tree. On the other hand, we are going to show how to
construct a solution of 3-Partition from a given tree representation.

Recall maximal cliques from introduction of this chapter. Notice that each trian-
gle u1u2u3 in the gadgets is a maximal cliques K (and for each triangle, we get a differ-
ent maximal clique). As such, RK has to contain a branch vertex since N [ui] 6= N [uj ]
for each i 6= j. The gadget Si contains three triangles, each taking one branch vertex of
T . In addition, their RK ’s are connected by Rvi which has to contain another branch
vertex. So in total, Si contains at least four branch vertices. The gadget Ti contains
Ai triangles, and so it requires at least Ai branch vertices. Since the number of branch
vertices of T is limited, each Si takes exactly four branch vertices and each Ti takes
exactly Ai branch vertices.

Now, if some Ti would contain a branch vertex of the subtrees attached to p(M+1)j ,
at least on its branch vertices would not be used (either not taken by Ti or Ti would
require at least Ai + 1 branch vertices). So each Si has to take branch vertices of the
subtrees attached to p(M+1)j for some j, and the take gadgets have to be placed inside
the gaps exactly as before.

Theorem 4.17. Even with only a single subtree pre-drawn, i.e, |G′| = 1, the problems
RepExt(T-in-T,Add) and RepExt(T-in-T,Both) are NP-complete.

Proof. We easily modify the above reductions; for Add type, the reduction of Propo-
sition 4.15, for Both type, the reduction of Theorem 4.16. The modification adds
one pre-drawn vertex v into G adjacent to everything such that Rv = T ′. The rep-
resentation of v spans the whole tree and thus forces the entire representation into
T ′.

We now deal just withAdd type, forBoth is the argument exactly the same. Let
T ′ be the partial tree and let T be the tree in which the representation is constructed,
so T ′ is a subtree of T . We claim that we can restrict a representation of each vertex
of G into T ′ and thus obtain a correct representation inside the subtree T ′.
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Let x ∈ V . Since xv ∈ E, the intersection of Rx and T ′ is a non-empty subtree.
So R′x = Rx ∩ T ′ is a representation of G in T ′. To argue the correctness, let x and
y be two different vertices from v (otherwise trivial). If xy /∈ E, then Rx ∩ Ry = ∅,
and so R′x ∩ R′y = ∅ as well. Otherwise xyv is a triangle in G, and thus by the Helly
property the subtrees Rx, Ry and Rv = T ′ have a non-empty common intersection,
giving R′x ∩R′y non-empty. This gives a reduction from RepExt(T-in-T,Fixed).

For path graphs, one can use a similar technique of a pre-drawn universal vertex
attached to everything. But there is the following difficulty: To do so, the input partial
tree T ′ has to be a path. For type Both, the complexity of RepExt(P-in-T,Both)
remains open. For type Add, we get the following weaker result:

Proposition 4.18. The problem RepExt(P-in-T,Add) is NP-complete.

Proof. Similarly as in Theorem 4.17, add a pre-drawn universal vertex v on the path
T ′ constructed in the reduction in Theorem 4.8 such that Rv = T ′. The rest is exactly
as above.

4.2.3 Parametrized Complexity

We deal with parametrized complexity of the problems and we give only minor and
partial results in this direction. Unlike in Section 4.1, parametrization by number
of pre-drawn subtrees k is mostly not helpful. We show that every problem with
exception of RepExt(P-in-T,Add) is already NP-complete for k = 0 or k = 1. For
RepExt(P-in-T,Add), we have only a weaker result that it it W[1]-hard with respect
to the paramater k since Proposition 4.13 straightforwardly generalizes.

Similarly, the low number of components c does not make the problem any
easier. We can easily modify the above reductions to show that all problems remain
NP-complete even if the graph G is connected.

Concerning size of the tree, Proposition 4.14 straightforwardly generalizes:

Proposition 4.19. Let t be the size of T ′. The problems RepExt(P-in-T,Fixed) and
RepExt(T-in-T,Fixed) are fixed-parameter tractable with respect to t. They can be
solved in time O(n+m+ f ′(t)) where f(t) = 2t2

t

.

Proof. Proceed exactly as before, prune the graph and test all possible assignments.
The only difference is that T has at most 2t subtrees.

We note that a more precise bound for the number of subtrees could be use but
we did not try to better estimate the function f ′.
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5 Conclusions

In this thesis, we show recent developments in the study of the partial representation
extension problems. We deal with classes of interval graphs, proper interval graphs,
unit interval graphs and chordal graphs. We describe concepts and techniques common
to these algorithms, and we believe that they can be applied to other classes as well.

We conclude this thesis by describing two related problems to the partial repre-
sentation extension problem. Also, we give some open problems.

5.1 Simultaneous Representations

In the introduction, we give a formal definition of the simultaneous representations
problem, considered recently by Jampani and Lubiw [23, 22]. To recall the problem, the
input gives graphsG1, . . . , Gk and the problem asks whether there exist representations
R1, . . . ,Rk assigning the same sets to the common vertices I. For a class C, we denote
this problem by SimRep(C).

Here, we show that for many classes C, the simultaneous representations problem
is closely related to the partial representation extension problem, and many techniques
useful for one problem can be applied to the other problem as well. This relation is
more like a general principle than a precise mathematical statement.

Partial Representation Extension `solves' Simultaneous Representations. Let the size
of I be small. If there exists only a small number of different representations of the
subgraph induced by the vertices of I, we can test all of them and solve SimRep using
RepExt. So if the RepExt problem is solvable in polynomial time, we can get a
fixed-parameter tractable algorithm with parameter i = |I|. We show this for interval
graphs:

Proposition 5.1. We can solve SimRep(INT) in time O((n+m) · (2i)!), where n is the
total number of vertices of all graphs and m is the total number of edges of all graphs.

Proof. If a representation RI of I would be given, we could use the algorithm for
RepExt(INT) to test whether it is possible to extend it to a simultaneous representa-
tion of all the graphs. We just need to test for every graph Gj whether it is possible
to extend the partial representation RI to a representation of entire Gj . This can be
done in time O(n +m), using Theorem 1.1.
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Since only the left-to-right order of endpoints is important, an interval graph
with i vertices has O((2i)!) topologically different representations. Therefore, we can
test all possible representation of I and get the running time O((n +m) · (2i)!).

Similar relation holds for some other classes, for example PROPER INT. We note
that this is currently the best known algorithm for SimRep(INT) when k > 2, no
polynomial-time algorithm is known. For k = 2, Jampani and Lubiw [23] give an
algorithm in time O(n2 log n), and a recent paper of Bläsius and Rutter [5] improves
the running time to O(n+m).

Simultaneous Representations \solves" Partial Representation Extension. Another re-
lation is that we are sometimes able to solveRepExt by SimRep, which was suggested
to us by Lubiw. Suppose that we have a graph G and a partial representation R′ of
G′. We construct an instance of SimRep for k = 2 as follows: I = G′, G1 = G and G2

contains additional auxiliary vertices. The purpose of these auxiliary vertices is to fix
a representation of I to be topologically equivalent to the partial representation R′.
Therefore, the solution R1 and R2 of the simultaneous representations problem gives
a topologically correct representation R1 extending R′.

For example in the case of interval graphs, we construct G2 as follows. Consider
the partial representation and add a long path consisting of short intervals on top
of it. These intervals correspond to the auxiliary verticse added to G2 and force a
grid-like structure on the real line. This grid forces I to be represented topologically
the same as in the partial representation R′. Thus we can solve RepExt(INT) using
SimRep(INT) which is used in [5] to obtain an algorithm solving RepExt(INT) in
time O(n+m).

We note that this relation does not always work. First, it might not be possible
to construct such a graph G2, forcing a topologically unique representation of I. For
example, the problem of simultaneous representations of chordal graphs is solvable in a
polynomial time [22]. But the corresponding partial representation extension problem,
considered in Chapter 4, is NP-complete; see Theorem 4.17. Second, it might happen
that the topological equivalency of the representations in not sufficient, for example
for partially represented unit interval graphs.

Applying Our Te
hniques. Concerning classes PROPER INT and UNIT INT, the simul-
taneous representations problem similarly distinguishes these classes. One can easily
construct two graphs which have simultaneous proper interval representations but not
simultaneous unit interval representations. We believe that many techniques developed
in Chapter 3 can be applied for the SimRep(PROPER INT) and SimRep(UNIT INT)
problems. We already have some partial results in this direction which are not yet
written, and we just sketch our ideas here.

First, one needs to construct simultaneous left-to-right orderings <1, . . . , <k hav-
ing the same order on I. If these orderings do not exist, the simultaneous represen-
tations cannot be constructed. Using these orderings, we can easily construct simul-
taneous proper interval representations. For unit interval graphs, we can additionally
apply linear programming or some shifting approach.

There are two main problems for which we do not know a solution yet. We are
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x before y
y after x

x meets y
y met-by x

x overlaps y
y overlapped-by x

x starts y
y started-by x

x during y
y includes x

x finishes y
y finished-by x

x equals y

Figure 5.1: Thirteen primitive relations between the thick interval x and the thin
interval y.

able to construct orderings <1, . . . , <k only if the graphs G1, . . . , Gk are connected.
If they are not connected, the construction of the orderings <1, . . . , <k is not clear.
Second, for shifting algorithm, we need to choose some initial representation, and it is
not clear how many shifting iterations are necessary.

5.2 Allen Algebras

The following type of problems is studied in theory of artificial intelligence and time
reasoning; see Golumbic [16] for a survey. Suppose that we have several events which
happened at some time. To every event, we can assign an interval of the timeline.
Now, for some pairs of events we know relations. Allowing shared endpoints, Allen [1]
characterized thirteen primitive relations between the events, see Figure 5.1. A relation
is a set of several primitive relations. For some pairs of events, we specify relations in
which they can occur. For example, we can specify for events x and y that either x is
before y, or x is during y.

We want to find intervals representing the events such that all the specified
relations are satisfied. This is called the interval satisfiability problem. Vilian and
Kautz [47] proved that this problem is NP-complete. Golumbic and Shamir [18] gave
a more simple proof, using the interval graph sandwich problem.

Notice that we can describe RepExt(INT) and RepExt(PROPER INT) in the
settings of Allen Algebras. In the case of RepExt(INT), we do it in the following way.
If vertices are non-adjacent, we assign them the relation {before, after}. If they are
adjacent, we assign the complement of the previous relation. For pairs of pre-drawn in-
tervals, we give singleton relations. Similarly, we can specify RepExt(PROPER INT).

But these more general problem are NP-complete, so they do not help in solving
RepExt(INT) and RepExt(PROPER INT). On the other hand, the results presented
in this thesis show that some very specific problems concerning Allen Algebras are
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polynomially solvable.

5.3 Open Problems

We state several open problems.

Di�erent Approa
h? The formulation of the first problem is not very precise. As we
already described in the introduction, all the algorithm for solving partial representa-
tion extension problems we know are based on the following principle. First, we use
some (known) way how to find all possible representations of an input graph. Then
we derive some necessary conditions from the partial representations. Moreover, we
show that these conditions are sufficient. Then, we test these conditions on all possible
representations of the graph. If some representation satisfies them, we can use this
representation to extend the input partial representation.

In the case of INT, we use PQ-trees. For PROPER INT and UNIT INT, we use
uniqueness of the representation. The algorithms for extension of comparability, per-
mutation and function graphs is based on properties of modular decomposition [25].
Also, the extension algorithm for planar graphs [2] uses SPQR-trees to work with all
possible representations of the given planar graph.

Question 5.2. Is it possible to solve some RepExt problem more “directly”, without
“testing” all possible representations?

Faster Algorithm for Unit Interval Graphs. Concerning Chapter 3, we give only one
open problem:

Problem 5.3. Is it possible to solve RepExt(UNIT INT) in time O(r), where r is the
size of the input?

Two Problems for Chapter 4. One of the main goals of Chapter 4 is to stimulate future
research in this area. Therefore, we give two open problems.

The first problems concerns the only open case in the table in Figure 1.7.

Problem 5.4. What is complexity of RepExt(P-in-T,Both)?

Concerning parametrized complexity, we believe it is useful to first attack prob-
lems related to interval graphs. This allows to develop tools for more complicated
chordal graphs. A generalization of Theorem 1.7 and Corollary 4.12 for P-in-P seems
to be particularly interesting. The PQ-tree approach seems to be a good starting
point.

Problem 5.5. Does RepExt(P-in-P,Fixed) belong to XP with respect to k where k is
the number of pre-drawn intervals?
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A Algorithms

In this appendix, we give pseudocodes of the main algorithms of this thesis. These
pseudocodes are not very detail and not written formally in any programming lan-
guage. They are meant to be overviews of all important steps done in each algorithm.

A.1 Reordering PQ-tree, General Partial Order

The pseudocode is in Algorithm 1. It is described in Section 2.1.1.

Algorithm 1 Reordering a PQ-tree – Reorder(T,⊳)

Require: A PQ-tree T and a partial ordering ⊳.
Ensure: A reordering T ′ of T such that <T ′ extends ⊳ if it exists.

1: Construct a digraph of ⊳.

2: Process the nodes of T from bottom to the root:
3: for a processed node N do

4: Consider the subdigraph induced by the children of N .
5: if the node N is a P-node then

6: Find a topological sorting of the subdigraph.
7: If it exists, reorder N according to it, otherwise output “no”.
8: else if the node N is a Q-node then

9: Test whether the current ordering or its reversal is compatible with the sub-
digraph.

10: If yes, reorder the node, otherwise output “no”.
11: end if

12: Contract the subdigraph into a single vertex.
13: end for

14: return A reordering T ′ of T .
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A.2 Reordering PQ-tree, Interval Order

The pseudocode is in Algorithm 2. The description is in Section 2.1.2.

Algorithm 2 Reordering a PQ-tree, interval order – Reorder(T,⊳)

Require: A PQ-tree T and an interval order ⊳ (with a normalized representation).
Ensure: A reordering T ′ of T such that <T ′ extends ⊳ if it exists.

1: Calculate handles for each invididual interval.

2: Process the nodes from bottom to the root:
3: for a processed node N do

4: Let the subtrees of N represent sets I1, . . . , Ik.
5: Sort their lower and upper handles from left to right.
6: if the node N is a P-node then

7: Find any topological sorting by repeated removing of minimal elements.
8: If it exists, reorder N according to it, otherwise output “no”.
9: else if the node N is a Q-node then

10: Test whether the current ordering or its reversal is compatible.
11: Process the ordering from left to right, check for every element whether it is

minimal and remove its handles from the common order of handles.
12: If one ordering is compatible, reorder the node, otherwise output “no”.
13: end if

14: Compute handles for I = I1 ∪ · · · ∪ Ik.
15: end for

16: return A reordering T ′ of T .

A.3 Extending Interval Graphs

The pseudocode is in Algorithm 3. It is described in Section 2.2.

Algorithm 3 Extending Interval Graphs – RepExt(INT)

Require: An interval graph G and a partial representation R′.
Ensure: A representation R extending R′ if it exists.

1: Compute maximal cliques and construct a PQ-tree.
2: Compute x and y and construct an interval order ⊳.
3: Use Algorithm 2 to reorder the PQ-tree according ⊳.
4: If any of these steps fails, no representation exists and output “no”.

5: Place the clique-point in order from left to right, as far to the left as possible.
6: Construct a representation R, using the clique-points.

7: return A representation R extending R′.
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A.4 Extending Proper Interval Graphs

The pseudocode is in Algorithm 4. The description is in Section 3.1.

Algorithm 4 Extending Proper Interval Graphs – RepExt(PROPER INT)

Require: A proper interval graph G and a partial representation R′.
Ensure: A representation R extending R′ if it exists.

1: if pre-drawn intervals of some component do not appear consecutively then

2: Return “no”, R′ is not extendible.
3: end if

4: Assign to the components pairwise disjoint open segments containing their pre-
drawn intervals.

5: for each component do
6: Construct the partial orderings < and <G′.
7: if there exists an ordering ⊳ extending <G′, and < or its reversal then
8: Construct a representation of the component in its open segment as follows.
9: Compute a common ordering ⋖, starting with ℓ1 ⋖ · · ·⋖ ℓn:

10: for each ri do
11: Insert ri right before ℓj such that vj is the first non-neighbor of vi on the

right (or append ri to the end, if vj does not exist).
12: end for

13: Using ⋖, construct a representation of the component by placing non-pre-
drawn endpoints equidistantly into the gaps.

14: else

15: Return “no”, R′ is not extendible.
16: end if

17: end for

18: return A representation R extending R′.
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A.5 Bounded Representation – LP Approach

The pseudocode is in Algorithm 5. The description is in Section 3.3.1.

Algorithm 5 Bounded Representation of Unit Interval Graphs – BoundRep

Require: A unit interval graph G, bound contraints and ordering ◭.
Ensure: A representation R in the ordering ◭ satisfying the bounds if it exists.

1: Compute the value ε according to the bounds p1
q1
, . . . , pb

qb
:

ε′ :=
1

lcm(q1, q2, . . . , qb)
, and ε :=

ε′

n
.

2: Process the components C1, . . . , Cc according to ◭.
3: for a component Ct do

4: Find the ordering <.
5: Construct linear orderings ⊳ for < and its reversal.
6: For each ordering, solve one linear program using the previous value Et−1.
7: if at least one program has a solution then

8: Use the solution minimizing the value of Et of the linear program.
9: else

10: No representation exists, output “no”.
11: end if

12: end for

13: return A representation R in the ordering ◭ satisfying the bounds.

A.6 Extending Unit Interval Graphs

The pseudocode is in Algorithm 6. The description is in Section 3.4.

Algorithm 6 Extending Unit Interval Graphs – RepExt(UNIT INT)

Require: A unit interval graph G and a partial representation R′.
Ensure: A representation R extending R′ if it exists.

1: Deal with unlocated components separately, using the standard algorithm.
2: Construct the ordering ◭ for located components.
3: Set bounds exactly for each pre-drawn interval vi at position ℓi, set

lbound(vi) = ubound(vi) = ℓi.

4: Solve the located components using the bounded representation problem.
5: If no bounded representation exists, output “no”.
6: return A representation R extending R′.
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A.7 Bounded Representation – Shifting Algorithm

The pseudocode is in Algorithm 7. It is described in Section 3.3.5.

Algorithm 7 Bounded Representation of Unit Interval Graphs – BoundRep

Require: A unit interval graph G, bound contraints and ordering ◭.
Ensure: A representation R in the ordering ◭ satisfying the bounds if it exists.

1: Constuct a pruned graph, as described in Section 3.3.4.
2: Compute the value ε according to the bounds p1

q1
, . . . , pb

qb
:

ε′ :=
1

lcm(q1, q2, . . . , qb)
, and ε :=

ε′

n2
.

3: Process the components C1, . . . , Cc according to ◭.
4: for a component Ct do

5: Find the ordering ⊳ (which is the same as < before).
6: For ⊳ and its reversal, construct the left-most representation (with additional

lower bound Et−1).

7: Precompute rounded lower bounds.
8: Construct an initial representation using [8].
9: Proceed the first phase using the LeftShiftprocedure.

10: Proceed the second phase using the LeftShiftprocedure.

11: for each LeftShift(vi) do
12: if ℓ̄i is the strict maximum then

13: Shift vi to position ℓ̄i.
14: else

15: The interval vi becomes fixed.
16: Compute precise and rounded positions of vi.
17: Remove βi from the position cycle.
18: end if

19: end for

20: if at least one left-most representation satisfies the upper bounds then
21: Use the left-most representation minimizing the value of Et.
22: else

23: No representation exists, output “no”.
24: end if

25: end for

26: return A representation R in the ordering ◭ satisfying the bounds.
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A.8 Subpath-in-Path Graphs – Sub Type Extension

The pseudocode is in Algorithm 8. The description is in Section 4.1.1.

Algorithm 8 Sub Type Extension of (Proper) Subpath-in-Path Graphs

Require: A (proper) subpath-in-path graph G and a partial representation R′.
Ensure: A representation R extending R′ if it exists.

1: if unlocated components can be placed then

2: Place them and ignore them in the rest of the algorithm.
3: else

4: No representation exists, output “no”.
5: end if

6: if some subpath contains p1 then

7: Add p0, v← (and p̄0 for PROPER P-in-P).
8: end if

9: if some subpath contains pt then
10: Add pt+1, v→ (and p̄t+1 for PROPER P-in-P).
11: end if

12: Apply the algorithm for type Both.
13: Deal with vertices created by subdivision of p0p1 and ptpt+1 if necessary.
14: Modify the representation to construct R.

15: return A representation R extending R′.

A.9 Proper Subpath-in-Path Graphs by Bin Packing

The pseudocode is in Algorithm 9. It is described in Section 4.1.3.

Algorithm 9 Sub Type Extension of Subpath-in-Path Graphs

Require: A proper subpath-in-path graph G and a partial representation R′ having
k pre-drawn intervals.

Ensure: A representation R extending R′ if it exists.

1: Test all 2k possible orderings of located components.
2: for each ordering do

3: Place the located components according to the ordering and minimum spans.
4: Distribute unlocated components into gaps using BinPacking.
5: end for

6: if no ordering works then
7: No representation exists, output “no”.
8: end if

9: return A representation R extending R′.
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