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Interval graphs

• Interval graphs (INT) have these representations:
• We assign closed intervals to the vertices — Iv to v .
• Vertices u and v are adjacent if and only if Iu ∩ Iv 6= ∅.
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• Proper interval graphs (PROPER INT) can be represented by
intervals without any interval being a subset of another one.

• Unit interval graphs (UNIT INT) can be represented by intervals of
a unit length.
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Interval graphs

Motivation to study interval graphs:

• Interval graphs naturally appear in many applications.

• For example, in biology, sociology, traffic light scheduling, . . .

• Most of optimization problems can be solved much faster
MAX CLIQUE, MAX INDEPENDENT SET, k-COLORING, . . .

To use these properties, we need to find a representation first:

Problem: Recognition of C – RECOG(C)
Input: A graph G.

Output: Does G has a C-representation?

For example, RECOG(INT) can be solved in O(n + m)
Booth and Lueker 1976; Corneil, Olariu and Stewart 2009.
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Partial Representation Extension

In this talk, we introduce the problem of partial representation
extension:

• A partial representation R′ of G is a representation of an induced
subgraph G′.

• A representation R extends R′ if it assigns the same sets to
vertices of G′.

We ask the following:

Problem: Partial Representation Extension of C – REPEXT(C)
Input: A graph G and a partial C-representation R′.

Output: Does G has a C-representation R extending R′?

P. Klavı́k, J. Kratochvı́l, T. Vyskočil Extending Partial Representations of Interval Graphs



Introduction Extending interval graphs Conclusions

Partial Representation Extension

In this talk, we introduce the problem of partial representation
extension:

• A partial representation R′ of G is a representation of an induced
subgraph G′.

• A representation R extends R′ if it assigns the same sets to
vertices of G′.

We ask the following:

Problem: Partial Representation Extension of C – REPEXT(C)
Input: A graph G and a partial C-representation R′.

Output: Does G has a C-representation R extending R′?
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Partial Representation Extension

Partial solution extension problems are frequently studied.

Edge coloring:

• In general, it is NP-hard (Holyer 1981).

• For bipartite graphs, it is trivial (by König-Hall Marriage Theorem).

• But extending for bipartite graphs is NP-hard (Fiala 2003), even
for planar inputs (Marx 2005).

Planarity testing:

• Planarity can be tested in linear time.

• Extending partial representations of planar graphs can also be
solved in linear time (Angelini et al. 2010).

• Every planar graph admits a straight line embedding.

• However, extending partial straight line embedding is NP-hard
(Patrignani et al. 2006).
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Our results

For an input graph with

• n vertices and

• m edges

we show:

Theorem

The REPEXT(INT) problem can be solved in time O(n2).

Theorem
The REPEXT(PROPER INT) problem can be solved in time O(nm).
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P. Klavı́k, J. Kratochvı́l, T. Vyskočil Extending Partial Representations of Interval Graphs



Introduction Extending interval graphs Conclusions

Our results

For an input graph with

• n vertices and

• m edges

we show:

Theorem

The REPEXT(INT) problem can be solved in time O(n2).

Theorem
The REPEXT(PROPER INT) problem can be solved in time O(nm).
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Recognition algorithm

Lemma (Fulkerson and Gross)
A graph is an interval graph if and only if there exists a linear ordering
of the maximal cliques such that for every vertex the cliques containing
this vertex appear consecutively in this ordering.

⇐=:

• We have an ordering, in example pqr < qrxy < yz < yw .

• For every clique C, we place a clique-point cp(C) on the real line.

• We place every interval “on top of its clique-points”.

p

q

r

x

y

z

w

pqr qrxy yz yw

x
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Recognition algorithm

Consider the following problem called consecutive ordering.

• We have a set E of elements and restricting sets S1, . . . , Sk .

• We want to find an ordering of the elements of E , such that
every Si appears consecutively.

Example

Consider elements E = {a, b, c, d , e, f , g, h} with restricting sets
S1 = {a, b, c}, S2 = {d , e}, and S3 = {e, f , g}.

• Feasible: abcdefgh, fgedhacb, . . .

• Not feasible: acdefgbh (violates S1), defhgabc (violates S3), . . .

In language of interval graphs:
Elements are maximal cliques, each vertex gives a restricting set.
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PQ-trees

A PQ-tree is a tree structure storing compactly every feasible ordering.
• Leaves correspond one-to-one to the elements of E .
• Inner nodes are either P-nodes, or Q-nodes.
• Ordering is given by the left to right order of the children.
• To obtain other orderings, we can reorder children of inner nodes:

• Children of a P-node can be reordered arbitrarily.
• A Q-node allows just to reverse the order.
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Overview of the algorithm

Booth and Lueker (1976) described how to construct a PQ-tree in time
O(e + k + t).

It gives the following algorithm for RECOG(INT):

1 Identify maximal cliques (using a linear-time algorithm of Rose,
Tarjan and Lueker 1976).

2 Using PQ-trees, find a feasible ordering of maximal cliques.

3 Construct a representation using this ordering.

For REPEXT(INT):

• The partial representation gives a partial ordering ◭ of the cliques.

Lemma
The partial representation can be extended if and only if there exists
a linear ordering feasible with the PQ-tree and extending ◭.
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Partial ordering ◭

• In step 3, not every clique-point can be placed everywhere.

• Pre-drawn intervals split the real line to several parts.

• Each clique-point can be placed to only some parts.

• Let x(a) denote the left-most point where cp(a) can be placed.
Similarly, y(a) denotes the right-most point.

• If y(a) ≤ x(b), then cp(a) has to be always on the left of cp(b).
It gives the partial ordering ◭.

x(a)

x

y z

w
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PQ-trees + ◭

• Since all cliques of a subtree has to appear consecutively, their
local order does not influence conditions outside of the subtree.

• We reorder the PQ-tree according to ◭ from the leaves to the root.
• The considered subtree gives a subgraph.

• For a P-node, we find any topological sorting of this subgraph.
• For a Q-node, we have two possible orders.

• When we are finished with the subtree, we contract its subgraph.
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• For a P-node, we find any topological sorting of this subgraph.
• For a Q-node, we have two possible orders.

• When we are finished with the subtree, we contract its subgraph.

P

P Q

b a c d e f

bac
d

e

f
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PQ-trees + ◭

Proof of Lemma: PQ-tree + ◭ ⇐⇒ INT can be extended.

• We place clique-points greedily, as far to the left as possible.

• Suppose a clique-point cp(a) cannot be placed, it is blocked by
cp(b) (consider the left-most one) and b < a.

• We have x(b) < y(a), otherwise a ◭ b.

• Why cp(b) was not placed more to the left? It was blocked by
some c < b and some pre-drawn intervals not contained in b.

• But then a and c (with some other cliques) appear consecutively,
contradicting c < b < a.

y(a)
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P. Klavı́k, J. Kratochvı́l, T. Vyskočil Extending Partial Representations of Interval Graphs



Introduction Extending interval graphs Conclusions

PQ-trees + ◭

Proof of Lemma: PQ-tree + ◭ ⇐⇒ INT can be extended.

• We place clique-points greedily, as far to the left as possible.

• Suppose a clique-point cp(a) cannot be placed, it is blocked by
cp(b) (consider the left-most one) and b < a.

• We have x(b) < y(a), otherwise a ◭ b.

• Why cp(b) was not placed more to the left? It was blocked by
some c < b and some pre-drawn intervals not contained in b.

• But then a and c (with some other cliques) appear consecutively,
contradicting c < b < a.

y(a) bx(b) c

P. Klavı́k, J. Kratochvı́l, T. Vyskočil Extending Partial Representations of Interval Graphs



Introduction Extending interval graphs Conclusions

PQ-trees + ◭

Proof of Lemma: PQ-tree + ◭ ⇐⇒ INT can be extended.

• We place clique-points greedily, as far to the left as possible.

• Suppose a clique-point cp(a) cannot be placed, it is blocked by
cp(b) (consider the left-most one) and b < a.

• We have x(b) < y(a), otherwise a ◭ b.

• Why cp(b) was not placed more to the left? It was blocked by
some c < b and some pre-drawn intervals not contained in b.

• But then a and c (with some other cliques) appear consecutively,
contradicting c < b < a.

y(a) bx(b) c
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Open problems

Question
How hard is REPEXT(UNIT INT)?

• Why is this question non-trivial? Roberts (1969) proved that

PROPER INT = UNIT INT.

• Unfortunately, this equivalence does not help here, consider this
example graph P3.

a b c
a

b

c
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Thank you!
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